Your browser doesn't support javascript.
loading
The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7.
Hou, Shuguo; Wang, Xin; Chen, Donghua; Yang, Xue; Wang, Mei; Turrà, David; Di Pietro, Antonio; Zhang, Wei.
Afiliação
  • Hou S; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
  • Wang X; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
  • Chen D; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
  • Yang X; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
  • Wang M; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
  • Turrà D; Departamento de Genética, Universidad de Córdoba, Córdoba, Spain.
  • Di Pietro A; Departamento de Genética, Universidad de Córdoba, Córdoba, Spain.
  • Zhang W; Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China.
PLoS Pathog ; 10(9): e1004331, 2014 Sep.
Article em En | MEDLINE | ID: mdl-25188390
In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Arabidopsis / Proteínas de Arabidopsis / Receptores de Reconhecimento de Padrão / Imunidade Vegetal / Imunidade Inata Idioma: En Revista: PLoS Pathog Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Arabidopsis / Proteínas de Arabidopsis / Receptores de Reconhecimento de Padrão / Imunidade Vegetal / Imunidade Inata Idioma: En Revista: PLoS Pathog Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China