Your browser doesn't support javascript.
loading
PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.
Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuse; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young.
Afiliação
  • Sebastian J; Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
  • Ryu KH; School of Biological Sciences, Seoul National University, Seoul, Korea.
  • Zhou J; Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
  • Tarkowská D; Laboratory of Growth Regulators, Faculty of Science, Palacky University and Institute of Experimental Botany AS CR, Olomouc, Czech Republic.
  • Tarkowski P; Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, Czech Republic.
  • Cho YH; School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
  • Yoo SD; School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
  • Kim ES; School of Biological Sciences, Seoul National University, Seoul, Korea.
  • Lee JY; Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America; School of Biological Sciences, Seoul National University, Seoul, Korea.
PLoS Genet ; 11(3): e1004973, 2015 Mar.
Article em En | MEDLINE | ID: mdl-25730098
ABSTRACT
Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Arabidopsis / Meristema / Proteínas de Homeodomínio / Proteínas de Arabidopsis / Nicho de Células-Tronco Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Arabidopsis / Meristema / Proteínas de Homeodomínio / Proteínas de Arabidopsis / Nicho de Células-Tronco Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos