Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.
J Chem Phys
; 142(14): 144111, 2015 Apr 14.
Article
em En
| MEDLINE
| ID: mdl-25877566
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Teoria Quântica
/
Água
/
Método de Monte Carlo
/
Simulação de Dinâmica Molecular
Tipo de estudo:
Health_economic_evaluation
Idioma:
En
Revista:
J Chem Phys
Ano de publicação:
2015
Tipo de documento:
Article
País de afiliação:
Itália