A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies.
Glob Chang Biol
; 22(2): 889-902, 2016 Feb.
Article
em En
| MEDLINE
| ID: mdl-26391334
Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Árvores
/
Dióxido de Carbono
/
Folhas de Planta
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Glob Chang Biol
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
Estados Unidos