Your browser doesn't support javascript.
loading
Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.
Ramalingam, Naveen; Warkiani, Majid Ebrahimi; Ramalingam, Neevan; Keshavarzi, Gholamreza; Hao-Bing, Liu; Hai-Qing, Thomas Gong.
Afiliação
  • Ramalingam N; Fluidigm Corporation, 7000 Shoreline Court, South San Francisco, CA, 94080, USA. naveensma@gmail.com.
  • Warkiani ME; School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore. naveensma@gmail.com.
  • Ramalingam N; School of Mechanical and Manufacturing Engineering, Australian Center for NanoMedicine, University of New South Wales, Sydney, 2052, Australia.
  • Keshavarzi G; Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA.
  • Hao-Bing L; School of Mechanical and Manufacturing Engineering, Australian Center for NanoMedicine, University of New South Wales, Sydney, 2052, Australia.
  • Hai-Qing TG; School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Biomed Microdevices ; 18(4): 68, 2016 08.
Article em En | MEDLINE | ID: mdl-27432321
Capillary-driven microfluidics is essential for development of point-of-care diagnostic micro-devices. Polymerase chain reaction (PCR)-based micro-devices are widely developed and used in such point-of-care settings. It is imperative to characterize the fluid parameters of PCR solution for designing efficient capillary-driven microfluidic networks. Generally, for numeric modelling, the fluid parameters of PCR solution are approximated to that of water. This procedure leads to inaccurate results, which are discrepant to experimental data. This paper describes mathematical modeling and experimental validation of capillary-driven flow inside Poly-(dimethyl) siloxane (PDMS)-glass hybrid micro-channels. Using experimentally measured PCR fluid parameters, the capillary meniscus displacement in PDMS-glass microfluidic ladder network is simulated using computational fluid dynamic (CFD), and experimentally verified to match with the simulated data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reação em Cadeia da Polimerase / Microfluídica / Técnicas Analíticas Microfluídicas Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reação em Cadeia da Polimerase / Microfluídica / Técnicas Analíticas Microfluídicas Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos