Your browser doesn't support javascript.
loading
Fasiglifam (TAK-875) has dual potentiating mechanisms via Gαq-GPR40/FFAR1 signaling branches on glucose-dependent insulin secretion.
Sakuma, Kensuke; Yabuki, Chiori; Maruyama, Minoru; Abiru, Akiko; Komatsu, Hidetoshi; Negoro, Nobuyuki; Tsujihata, Yoshiyuki; Takeuchi, Koji; Habata, Yugo; Mori, Masaaki.
Afiliação
  • Sakuma K; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Yabuki C; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Maruyama M; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Abiru A; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Komatsu H; Central Nervous System Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Negoro N; Inflammation Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Tsujihata Y; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Takeuchi K; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Habata Y; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
  • Mori M; Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan.
Pharmacol Res Perspect ; 4(3): e00237, 2016 Jun.
Article em En | MEDLINE | ID: mdl-27433346
ABSTRACT
Fasiglifam (TAK-875) is a free fatty acid receptor 1 (FFAR1)/G-protein-coupled receptor 40 (GPR40) agonist that improves glycemic control in type 2 diabetes with minimum risk of hypoglycemia. Fasiglifam potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells glucose dependently, although the precise mechanism underlying the glucose dependency still remains unknown. Here, we investigated key cross-talk between the GSIS pathway and FFAR1 signaling, and Ca(2+) dynamics using mouse insulinoma MIN6 cells. We demonstrated that the glucose-dependent insulinotropic effect of fasiglifam required membrane depolarization and that fasiglifam induced a glucose-dependent increase in intracellular Ca(2+) level and amplification of Ca(2+) oscillations. This differed from the sulfonylurea glimepiride that induced changes in Ca(2+) dynamics glucose independently. Stimulation with cell-permeable analogs of IP3 or diacylglycerol (DAG), downstream second messengers of Gαq-FFAR1, augmented GSIS similar to fasiglifam, indicating their individual roles in the potentiation of GSIS pathway. Intriguingly, the IP3 analog triggered similar Ca(2+) dynamics to fasiglifam, whereas the DAG analog had no effect. Despite the lack of an effect on Ca(2+) dynamics, the DAG analog elicited synergistic effects on insulin secretion with Ca(2+) influx evoked by an L-type voltage-dependent calcium channel opener that mimics glucose-dependent Ca(2+) dynamics. These results indicate that the Gαq signaling activated by fasiglifam enhances GSIS pathway via dual potentiating mechanisms in which IP3 amplifies glucose-induced Ca(2+) oscillations and DAG/protein kinase C (PKC) augments downstream secretory mechanisms independent of Ca(2+) oscillations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmacol Res Perspect Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmacol Res Perspect Ano de publicação: 2016 Tipo de documento: Article