Your browser doesn't support javascript.
loading
A survey on deep learning in medical image analysis.
Litjens, Geert; Kooi, Thijs; Bejnordi, Babak Ehteshami; Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Ghafoorian, Mohsen; van der Laak, Jeroen A W M; van Ginneken, Bram; Sánchez, Clara I.
Afiliação
  • Litjens G; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands. Electronic address: geert.litjens@radboudumc.nl.
  • Kooi T; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Bejnordi BE; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Setio AAA; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Ciompi F; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Ghafoorian M; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • van der Laak JAWM; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • van Ginneken B; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Sánchez CI; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
Med Image Anal ; 42: 60-88, 2017 Dec.
Article em En | MEDLINE | ID: mdl-28778026
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Diagnóstico por Imagem / Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Diagnóstico por Imagem / Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article