Arabidopsis ACYL-COA-BINDING PROTEIN1 interacts with STEROL C4-METHYL OXIDASE1-2 to modulate gene expression of homeodomain-leucine zipper IV transcription factors.
New Phytol
; 218(1): 183-200, 2018 04.
Article
em En
| MEDLINE
| ID: mdl-29288621
Fatty acids (FAs) and sterols constitute building blocks of eukaryotic membranes and lipid signals. Co-regulation of FA and sterol synthesis is mediated by sterol regulatory element-binding proteins in animals but remains elusive in plants. We reported recently that Arabidopsis ACYL-COA-BINDING PROTEIN1 (ACBP1) modulates sterol synthesis via protein-protein interaction with STEROL C4-METHYL OXIDASE1-1 (SMO1-1). Herein, ACBP1 was demonstrated to co-express and interact with SMO1-2 by yeast two-hybrid, co-localization, pull-down, co-immunoprecipitation and ß-glucuronidase assays. SMO1-2 silenced in acbp1 was used in phenotyping, GC-MS and expression profiling. ACBP1 co-expressed with SMO1-2 in embryo sacs, pollen and trichomes, corroborating with cooperative tissue-specific functions unseen with SMO1-1. SMO1-2 silencing in acbp1 impaired seed development, male and female gamete transmission, and pollen function. Genes encoding homeodomain-leucine zipper IV transcription factors (HDG5, HDG10, HDG11 and GLABRA2), which potentially bind phospholipids/sterols, were transcribed aberrantly. GLABRA2 targets (MYB23, MUM4 and PLDα1) were misregulated, causing glabra2-resembling trichome, seed coat mucilage and oil-accumulating phenotypes. Together with altered sterol and FA compositions upon ACBP1 mutation and/or SMO1-2 silencing, ACBP1-SMO1 interaction appears to mediate homeostatic co-regulation of FAs and sterols, which serve as lipid modulators for gene expression of homeodomain-leucine zipper IV transcription factors.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Transporte
/
Arabidopsis
/
Proteínas de Homeodomínio
/
Regulação da Expressão Gênica de Plantas
/
Proteínas de Arabidopsis
/
Fatores de Transcrição de Zíper de Leucina Básica
/
Oxigenases de Função Mista
Idioma:
En
Revista:
New Phytol
Assunto da revista:
BOTANICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China