Your browser doesn't support javascript.
loading
Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse Model.
Sheean, Rebecca K; McKay, Fiona C; Cretney, Erika; Bye, Christopher R; Perera, Nirma D; Tomas, Doris; Weston, Richard A; Scheller, Karlene J; Djouma, Elvan; Menon, Parvathi; Schibeci, Stephen D; Marmash, Najwa; Yerbury, Justin J; Nutt, Stephen L; Booth, David R; Stewart, Graeme J; Kiernan, Mathew C; Vucic, Steve; Turner, Bradley J.
Afiliação
  • Sheean RK; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • McKay FC; Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.
  • Cretney E; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
  • Bye CR; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
  • Perera ND; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • Tomas D; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • Weston RA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • Scheller KJ; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • Djouma E; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
  • Menon P; Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
  • Schibeci SD; Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
  • Marmash N; Westmead Hospital, Westmead, New South Wales, Australia.
  • Yerbury JJ; Western Clinical School, University of Sydney, New South Wales, Australia.
  • Nutt SL; Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.
  • Booth DR; Westmead Hospital, Westmead, New South Wales, Australia.
  • Stewart GJ; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.
  • Kiernan MC; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
  • Vucic S; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
  • Turner BJ; Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.
JAMA Neurol ; 75(6): 681-689, 2018 06 01.
Article em En | MEDLINE | ID: mdl-29507931
ABSTRACT
Importance Neuroinflammation appears to be a key modulator of disease progression in amyotrophic lateral sclerosis (ALS) and thereby a promising therapeutic target. The CD4+Foxp3+ regulatory T-cells (Tregs) infiltrating into the central nervous system suppress neuroinflammation and promote the activation of neuroprotective microglia in mouse models of ALS. To our knowledge, the therapeutic association of host Treg expansion with ALS progression has not been studied in vivo.

Objective:

To assess the role of Tregs in regulating the pathophysiology of ALS in humans and the therapeutic outcome of increasing Treg activity in a mouse model of the disease. Design, Setting, and

Participants:

This prospective multicenter human and animal study was performed in hospitals, outpatient clinics, and research institutes. Clinical and function assessment, as well as immunological studies, were undertaken in 33 patients with sporadic ALS, and results were compared with 38 healthy control participants who were consecutively recruited from the multidisciplinary ALS clinic at Westmead Hospital between February 1, 2013, and December 31, 2014. All data analysis on patients with ALS was undertaken between January 2015 and December 2016. Subsequently, we implemented a novel approach to amplify the endogenous Treg population using peripheral injections of interleukin 2/interleukin 2 monoclonal antibody complexes (IL-2c) in transgenic mice that expressed mutant superoxide dismutase 1 (SOD1), a gene associated with motor neuron degeneration. Main Outcomes and

Measures:

In patients with ALS, Treg levels were determined and then correlated with disease progression. Circulating T-cell populations, motor neuron size, glial cell activation, and T-cell and microglial gene expression in spinal cords were determined in SOD1G93A mice, as well as the association of Treg amplification with disease onset and survival time in mice.

Results:

The cohort of patients with ALS included 24 male patients and 9 female patients (mean [SD] age at assessment, 58.9 [10.9] years). There was an inverse correlation between total Treg levels (including the effector CD45RO+ subset) and rate of disease progression (R = -0.40, P = .002). Expansion of the effector Treg population in the SOD1G93A mice was associated with a significant slowing of disease progression, which was accompanied by an increase in survival time (IL-2c-treated mice mean [SD], 160.6 [10.8] days; control mice mean [SD], 144.9 [10.6] days; P = .003). Importantly, Treg expansion was associated with preserved motor neuron soma size and marked suppression of astrocytic and microglial immunoreactivity in the spinal cords of SOD1G93A mice, as well as elevated neurotrophic factor gene expression in spinal cord and peripheral nerves. Conclusions and Relevance These findings establish a neuroprotective effect of Tregs, possibly mediated by suppression of toxic neuroinflammation in the central nervous system. Strategies aimed at enhancing the Treg population and neuroprotective activity from the periphery may prove therapeutically useful for patients with ALS.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos T Reguladores / Progressão da Doença / Modelos Animais de Doenças / Esclerose Lateral Amiotrófica Tipo de estudo: Clinical_trials / Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: JAMA Neurol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos T Reguladores / Progressão da Doença / Modelos Animais de Doenças / Esclerose Lateral Amiotrófica Tipo de estudo: Clinical_trials / Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: JAMA Neurol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália