Your browser doesn't support javascript.
loading
Wood-Inspired High-Performance Ultrathick Bulk Battery Electrodes.
Lu, Lei-Lei; Lu, Yu-Yang; Xiao, Zi-Jian; Zhang, Tian-Wen; Zhou, Fei; Ma, Tao; Ni, Yong; Yao, Hong-Bin; Yu, Shu-Hong; Cui, Yi.
Afiliação
  • Lu LL; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Lu YY; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Xiao ZJ; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Zhang TW; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Zhou F; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Ma T; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Ni Y; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Yao HB; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Yu SH; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Scienc
  • Cui Y; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
Adv Mater ; 30(20): e1706745, 2018 May.
Article em En | MEDLINE | ID: mdl-29603415
ABSTRACT
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm-2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article