Your browser doesn't support javascript.
loading
QuipuNet: Convolutional Neural Network for Single-Molecule Nanopore Sensing.
Misiunas, Karolis; Ermann, Niklas; Keyser, Ulrich F.
Afiliação
  • Misiunas K; Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K.
  • Ermann N; Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K.
  • Keyser UF; Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , U.K.
Nano Lett ; 18(6): 4040-4045, 2018 06 13.
Article em En | MEDLINE | ID: mdl-29845855
Nanopore sensing is a versatile technique for the analysis of molecules on the single-molecule level. However, extracting information from data with established algorithms usually requires time-consuming checks by an experienced researcher due to inherent variability of solid-state nanopores. Here, we develop a convolutional neural network (CNN) for the fully automated extraction of information from the time-series signals obtained by nanopore sensors. In our demonstration, we use a previously published data set on multiplexed single-molecule protein sensing. The neural network learns to classify translocation events with greater accuracy than previously possible, while also increasing the number of analyzable events by a factor of 5. Our results demonstrate that deep learning can achieve significant improvements in single molecule nanopore detection with potential applications in rapid diagnostics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2018 Tipo de documento: Article