Your browser doesn't support javascript.
loading
Direct conversion of cellulose into ethanol and ethyl-ß-d-glucoside via engineered Saccharomyces cerevisiae.
Jayakody, Lahiru N; Liu, Jing-Jing; Yun, Eun Ju; Turner, Timothy Lee; Oh, Eun Joong; Jin, Yong-Su.
Afiliação
  • Jayakody LN; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Liu JJ; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Yun EJ; National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado.
  • Turner TL; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Oh EJ; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Jin YS; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Biotechnol Bioeng ; 115(12): 2859-2868, 2018 12.
Article em En | MEDLINE | ID: mdl-30011361
ABSTRACT
Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-ß-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular ß-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-ß-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-ß-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Celulose / Etanol / Engenharia Metabólica / Glucosídeos Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Celulose / Etanol / Engenharia Metabólica / Glucosídeos Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2018 Tipo de documento: Article