Your browser doesn't support javascript.
loading
Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter.
Di Antonio, Andrea; Popoola, Olalekan A M; Ouyang, Bin; Saffell, John; Jones, Roderic L.
Afiliação
  • Di Antonio A; Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ad823@cam.ac.uk.
  • Popoola OAM; Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. oamp2@cam.ac.uk.
  • Ouyang B; Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. bo237@cam.ac.uk.
  • Saffell J; Alphasense Ltd., Sensor Technology House, 300 Avenue West, Skyline 120, Great Notley, Essex CM77 7AA, UK. jrs@alphasense.com.
  • Jones RL; Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. rlj1001@cam.ac.uk.
Sensors (Basel) ; 18(9)2018 Aug 24.
Article em En | MEDLINE | ID: mdl-30149560
ABSTRACT
There is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e.g., optical particle counters, OPCs) can help address this issue; however, their application under ambient conditions can be affected by high relative humidity (RH) conditions. Here, we show how, by exploiting the measured particle size distribution information rather than PM as has been suggested elsewhere, a correction can be derived which not only significantly improves sensor performance but which also retains fundamental information on particle composition. A particle size distribution⁻based correction algorithm, founded on κ -Köhler theory, was developed to account for the influence of RH on sensor measurements. The application of the correction algorithm, which assumed physically reasonable κ values, resulted in a significant improvement, with the overestimation of PM measurements reduced from a factor of ~5 before correction to 1.05 after correction. We conclude that a correction based on particle size distribution, rather than PM mass, is required to properly account for RH effects and enable low cost optical PM sensors to provide reliable ambient PM measurements.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Sensors (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Sensors (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido