Your browser doesn't support javascript.
loading
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks.
Cortés-Ciriano, Isidro; Bender, Andreas.
Afiliação
  • Cortés-Ciriano I; Centre for Molecular Informatics, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.
  • Bender A; Centre for Molecular Informatics, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.
J Chem Inf Model ; 59(3): 1269-1281, 2019 03 25.
Article em En | MEDLINE | ID: mdl-30336009
Deep learning architectures have proved versatile in a number of drug discovery applications, including the modeling of in vitro compound activity. While controlling for prediction confidence is essential to increase the trust, interpretability, and usefulness of virtual screening models in drug discovery, techniques to estimate the reliability of the predictions generated with deep learning networks remain largely underexplored. Here, we present Deep Confidence, a framework to compute valid and efficient confidence intervals for individual predictions using the deep learning technique Snapshot Ensembling and conformal prediction. Specifically, Deep Confidence generates an ensemble of deep neural networks by recording the network parameters throughout the local minima visited during the optimization phase of a single neural network. This approach serves to derive a set of base learners (i.e., snapshots) with comparable predictive power on average that will however generate slightly different predictions for a given instance. The variability across base learners and the validation residuals are in turn harnessed to compute confidence intervals using the conformal prediction framework. Using a set of 24 diverse IC50 data sets from ChEMBL 23, we show that Snapshot Ensembles perform on par with Random Forest (RF) and ensembles of independently trained deep neural networks. In addition, we find that the confidence regions predicted using the Deep Confidence framework span a narrower set of values. Overall, Deep Confidence represents a highly versatile error prediction framework that can be applied to any deep learning-based application at no extra computational cost.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Descoberta de Drogas / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Descoberta de Drogas / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Reino Unido