Your browser doesn't support javascript.
loading
Global optimization using Gaussian processes to estimate biological parameters from image data.
Barac, Diana; Multerer, Michael D; Iber, Dagmar.
Afiliação
  • Barac D; Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, Basel 4058, Switzerland. Electronic address: diana.barac@bsse.ethz.ch.
  • Multerer MD; Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, Basel 4058, Switzerland. Electronic address: michael.multerer@usi.ch.
  • Iber D; Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, Basel 4058, Switzerland. Electronic address: dagmar.iber@bsse.ethz.ch.
J Theor Biol ; 481: 233-248, 2019 11 21.
Article em En | MEDLINE | ID: mdl-30529487
Parameter estimation is a major challenge in computational modeling of biological processes. This is especially the case in image-based modeling where the inherently quantitative output of the model is measured against image data, which is typically noisy and non-quantitative. In addition, these models can have a high computational cost, limiting the number of feasible simulations, and therefore rendering most traditional parameter estimation methods unsuitable. In this paper, we present a pipeline that uses Gaussian process learning to estimate biological parameters from noisy, non-quantitative image data when the model has a high computational cost. This approach is first successfully tested on a parametric function with the goal of retrieving the original parameters. We then apply it to estimating parameters in a biological setting by fitting artificial in-situ hybridization (ISH) data of the developing murine limb bud. We expect that this method will be of use in a variety of modeling scenarios where quantitative data is missing and the use of standard parameter estimation approaches in biological modeling is prohibited by the computational cost of the model.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Processamento de Imagem Assistida por Computador / Embrião de Mamíferos / Membro Posterior / Modelos Biológicos Limite: Animals Idioma: En Revista: J Theor Biol Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Processamento de Imagem Assistida por Computador / Embrião de Mamíferos / Membro Posterior / Modelos Biológicos Limite: Animals Idioma: En Revista: J Theor Biol Ano de publicação: 2019 Tipo de documento: Article