Global optimization using Gaussian processes to estimate biological parameters from image data.
J Theor Biol
; 481: 233-248, 2019 11 21.
Article
em En
| MEDLINE
| ID: mdl-30529487
Parameter estimation is a major challenge in computational modeling of biological processes. This is especially the case in image-based modeling where the inherently quantitative output of the model is measured against image data, which is typically noisy and non-quantitative. In addition, these models can have a high computational cost, limiting the number of feasible simulations, and therefore rendering most traditional parameter estimation methods unsuitable. In this paper, we present a pipeline that uses Gaussian process learning to estimate biological parameters from noisy, non-quantitative image data when the model has a high computational cost. This approach is first successfully tested on a parametric function with the goal of retrieving the original parameters. We then apply it to estimating parameters in a biological setting by fitting artificial in-situ hybridization (ISH) data of the developing murine limb bud. We expect that this method will be of use in a variety of modeling scenarios where quantitative data is missing and the use of standard parameter estimation approaches in biological modeling is prohibited by the computational cost of the model.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Simulação por Computador
/
Processamento de Imagem Assistida por Computador
/
Embrião de Mamíferos
/
Membro Posterior
/
Modelos Biológicos
Limite:
Animals
Idioma:
En
Revista:
J Theor Biol
Ano de publicação:
2019
Tipo de documento:
Article