Your browser doesn't support javascript.
loading
Megaphylogeny resolves global patterns of mushroom evolution.
Varga, Torda; Krizsán, Krisztina; Földi, Csenge; Dima, Bálint; Sánchez-García, Marisol; Sánchez-Ramírez, Santiago; Szöllosi, Gergely J; Szarkándi, János G; Papp, Viktor; Albert, László; Andreopoulos, William; Angelini, Claudio; Antonín, Vladimír; Barry, Kerrie W; Bougher, Neale L; Buchanan, Peter; Buyck, Bart; Bense, Viktória; Catcheside, Pam; Chovatia, Mansi; Cooper, Jerry; Dämon, Wolfgang; Desjardin, Dennis; Finy, Péter; Geml, József; Haridas, Sajeet; Hughes, Karen; Justo, Alfredo; Karasinski, Dariusz; Kautmanova, Ivona; Kiss, Brigitta; Kocsubé, Sándor; Kotiranta, Heikki; LaButti, Kurt M; Lechner, Bernardo E; Liimatainen, Kare; Lipzen, Anna; Lukács, Zoltán; Mihaltcheva, Sirma; Morgado, Louis N; Niskanen, Tuula; Noordeloos, Machiel E; Ohm, Robin A; Ortiz-Santana, Beatriz; Ovrebo, Clark; Rácz, Nikolett; Riley, Robert; Savchenko, Anton; Shiryaev, Anton; Soop, Karl.
Afiliação
  • Varga T; Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Krizsán K; Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Földi C; Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Dima B; Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
  • Sánchez-García M; Clark University, Worcester, MA, USA.
  • Sánchez-Ramírez S; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
  • Szöllosi GJ; MTA-ELTE 'Lendület' Evolutionary Genomics Research Group, Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
  • Szarkándi JG; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
  • Papp V; Department of Botany, Faculty of Horticultural Science, Szent István University, Budapest, Hungary.
  • Albert L; Hungarian Mycological Society, Budapest, Hungary.
  • Andreopoulos W; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Angelini C; Via Cappuccini 78, Pordenone, Italy.
  • Antonín V; Jardin Botanico Nacional Ma. Moscoso, Santo Domingo, Dominican Republic.
  • Barry KW; Department of Botany, Moravian Museum, Brno, Czech Republic.
  • Bougher NL; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Buchanan P; Science and Conservation, Department of Biodiversity, Western Australian Herbarium, Kensington, WA, Australia.
  • Buyck B; Manaaki Whenua-Landcare Research, Auckland, New Zealand.
  • Bense V; Institut de Systématique, Evolution, Biodiversité (ISYEB-UMR 7205), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, Paris, France.
  • Catcheside P; Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Chovatia M; State Herbarium of South Australia, Adelaide, South Australia, Australia.
  • Cooper J; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Dämon W; Manaaki Whenua-Landcare Research, Lincoln, New Zealand.
  • Desjardin D; Oberfeldstraße 9, St. Georgen bei Salzburg, Austria.
  • Finy P; Department of Biology, San Francisco State University, San Francisco, CA, USA.
  • Geml J; Zsombolyai u. 56., Székesfehérvár, Hungary.
  • Haridas S; Naturalis Biodiversity Center, Leiden, the Netherlands.
  • Hughes K; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Justo A; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
  • Karasinski D; Clark University, Worcester, MA, USA.
  • Kautmanova I; Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland.
  • Kiss B; Natural History Museum, Slovak National Museum, Bratislava, Slovakia.
  • Kocsubé S; Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Kotiranta H; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
  • LaButti KM; Biodiversity Unit, Finnish Environment Institute, Helsinki, Finland.
  • Lechner BE; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Liimatainen K; Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Lipzen A; The Jodrell Laboratory, Royal Botanic Gardens, Kew, UK.
  • Lukács Z; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Mihaltcheva S; Damjanich u. 54, Budapest, Hungary.
  • Morgado LN; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Niskanen T; Naturalis Biodiversity Center, Leiden, the Netherlands.
  • Noordeloos ME; Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway.
  • Ohm RA; The Jodrell Laboratory, Royal Botanic Gardens, Kew, UK.
  • Ortiz-Santana B; Naturalis Biodiversity Center, Leiden, the Netherlands.
  • Ovrebo C; Department of Biology, Microbiology, Utrecht University, Utrecht, the Netherlands.
  • Rácz N; Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, USA.
  • Riley R; Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
  • Savchenko A; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
  • Shiryaev A; US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
  • Soop K; Botanical Museum, University of Helsinki, Helsinki, Finland.
Nat Ecol Evol ; 3(4): 668-678, 2019 04.
Article em En | MEDLINE | ID: mdl-30886374
ABSTRACT
Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Fúngico / Agaricales Idioma: En Revista: Nat Ecol Evol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Fúngico / Agaricales Idioma: En Revista: Nat Ecol Evol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Hungria