Your browser doesn't support javascript.
loading
Fluorescence imaging reversion using spatially variant deconvolution.
Anastasopoulou, Maria; Gorpas, Dimitris; Koch, Maximilian; Liapis, Evangelos; Glasl, Sarah; Klemm, Uwe; Karlas, Angelos; Lasser, Tobias; Ntziachristos, Vasilis.
Afiliação
  • Anastasopoulou M; Chair of Biological Imaging and TranslaTUM, Technical University Munich, Munich, 81675, Germany.
  • Gorpas D; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
  • Koch M; Chair of Biological Imaging and TranslaTUM, Technical University Munich, Munich, 81675, Germany.
  • Liapis E; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
  • Glasl S; Chair of Biological Imaging and TranslaTUM, Technical University Munich, Munich, 81675, Germany.
  • Klemm U; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
  • Karlas A; Chair of Biological Imaging and TranslaTUM, Technical University Munich, Munich, 81675, Germany.
  • Lasser T; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
  • Ntziachristos V; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
Sci Rep ; 9(1): 18123, 2019 12 02.
Article em En | MEDLINE | ID: mdl-31792293
ABSTRACT
Fluorescence imaging opens new possibilities for intraoperative guidance and early cancer detection, in particular when using agents that target specific disease features. Nevertheless, photon scattering in tissue degrades image quality and leads to ambiguity in fluorescence image interpretation and challenges clinical translation. We introduce the concept of capturing the spatially-dependent impulse response of an image and investigate Spatially Adaptive Impulse Response Correction (SAIRC), a method that is proposed for improving the accuracy and sensitivity achieved. Unlike classical methods that presume a homogeneous spatial distribution of optical properties in tissue, SAIRC explicitly measures the optical heterogeneity in tissues. This information allows, for the first time, the application of spatially-dependent deconvolution to correct the fluorescence images captured in relation to their modification by photon scatter. Using experimental measurements from phantoms and animals, we investigate the improvement in resolution and quantification over non-corrected images. We discuss how the proposed method is essential for maximizing the performance of fluorescence molecular imaging in the clinic.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha