Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models.
IEEE Trans Neural Netw Learn Syst
; 32(11): 4971-4982, 2021 Nov.
Article
em En
| MEDLINE
| ID: mdl-33017297
In this article, we study the recursive algorithms for a class of separable nonlinear models (SNLMs) in which the parameters can be partitioned into a linear part and a nonlinear part. Such models are very common in machine learning, system identification, and signal processing. Utilizing the special structure of the SNLMs, we propose a recursive variable projection (RVP) algorithm, in which at each recursion, the linear parameters of the model are eliminated, and the nonlinear parameters are updated by the recursive Levenberg-Marquart algorithm. Then, based on the updated nonlinear parameters, the linear parameters are updated by the recursive least-squares algorithm. According to a convergence analysis of the RVP algorithm, the parameter estimation error is mean-square bounded. Numerical examples confirm the satisfactory performance of the proposed algorithm.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
IEEE Trans Neural Netw Learn Syst
Ano de publicação:
2021
Tipo de documento:
Article