Your browser doesn't support javascript.
loading
Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models.
IEEE Trans Neural Netw Learn Syst ; 32(11): 4971-4982, 2021 Nov.
Article em En | MEDLINE | ID: mdl-33017297
In this article, we study the recursive algorithms for a class of separable nonlinear models (SNLMs) in which the parameters can be partitioned into a linear part and a nonlinear part. Such models are very common in machine learning, system identification, and signal processing. Utilizing the special structure of the SNLMs, we propose a recursive variable projection (RVP) algorithm, in which at each recursion, the linear parameters of the model are eliminated, and the nonlinear parameters are updated by the recursive Levenberg-Marquart algorithm. Then, based on the updated nonlinear parameters, the linear parameters are updated by the recursive least-squares algorithm. According to a convergence analysis of the RVP algorithm, the parameter estimation error is mean-square bounded. Numerical examples confirm the satisfactory performance of the proposed algorithm.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Ano de publicação: 2021 Tipo de documento: Article