Your browser doesn't support javascript.
loading
Exploring the Design Rules for Efficient Membrane-Reshaping Nanostructures.
Forster, Joel C; Krausser, Johannes; Vuyyuru, Manish R; Baum, Buzz; Saric, Andela.
Afiliação
  • Forster JC; Department of Physics and Astronomy, University College London, WC1E 6BS London, United Kingdom.
  • Krausser J; Institute for the Physics of Living Systems, University College London, WC1E 6BS London, United Kingdom.
  • Vuyyuru MR; MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BS London, United Kingdom.
  • Baum B; Department of Physics and Astronomy, University College London, WC1E 6BS London, United Kingdom.
  • Saric A; Institute for the Physics of Living Systems, University College London, WC1E 6BS London, United Kingdom.
Phys Rev Lett ; 125(22): 228101, 2020 Nov 27.
Article em En | MEDLINE | ID: mdl-33315453
ABSTRACT
In this study, we investigate the role of the surface patterning of nanostructures for cell membrane reshaping. To accomplish this, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations and explore the solution space of ligand patterns on a nanoparticle that promote efficient and reliable cell uptake. Surprisingly, we find that in the regime of low ligand number the best-performing structures are characterized by ligands arranged into long one-dimensional chains that pattern the surface of the particle. We show that these chains of ligands provide particles with high rotational freedom and they lower the free energy barrier for membrane crossing. Our approach reveals a set of nonintuitive design rules that can be used to inform artificial nanoparticle construction and the search for inhibitors of viral entry.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Nanoestruturas / Modelos Químicos Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Nanoestruturas / Modelos Químicos Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido