Your browser doesn't support javascript.
loading
Improving axial resolution in Structured Illumination Microscopy using deep learning.
Boland, Miguel A; Cohen, Edward A K; Flaxman, Seth R; Neil, Mark A A.
Afiliação
  • Boland MA; Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen's Gate, London SW7 2RH, UK.
  • Cohen EAK; Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen's Gate, London SW7 2RH, UK.
  • Flaxman SR; Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen's Gate, London SW7 2RH, UK.
  • Neil MAA; Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen's Gate, London SW7 2RH, UK.
Philos Trans A Math Phys Eng Sci ; 379(2199): 20200298, 2021 Jun 14.
Article em En | MEDLINE | ID: mdl-33896203
Structured Illumination Microscopy (SIM) is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D SIM image stacks with twice the axial resolution attainable through conventional SIM reconstructions. We further demonstrate our method is robust to noise and evaluate it against two-point cases and axial gratings. Finally, we discuss potential adaptions of the method to further improve resolution. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Microscopia de Fluorescência Tipo de estudo: Evaluation_studies Limite: Animals / Humans Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Microscopia de Fluorescência Tipo de estudo: Evaluation_studies Limite: Animals / Humans Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article