Your browser doesn't support javascript.
loading
Machine learning in the detection and management of atrial fibrillation.
Wegner, Felix K; Plagwitz, Lucas; Doldi, Florian; Ellermann, Christian; Willy, Kevin; Wolfes, Julian; Sandmann, Sarah; Varghese, Julian; Eckardt, Lars.
Afiliação
  • Wegner FK; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany. felix.wegner@ukmuenster.de.
  • Plagwitz L; Institut für Medizinische Informatik, Westfälische-Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Doldi F; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Ellermann C; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Willy K; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Wolfes J; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Sandmann S; Institut für Medizinische Informatik, Westfälische-Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Varghese J; Institut für Medizinische Informatik, Westfälische-Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
  • Eckardt L; Klinik für Kardiologie II - Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
Clin Res Cardiol ; 111(9): 1010-1017, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35353207
Machine learning has immense novel but also disruptive potential for medicine. Numerous applications have already been suggested and evaluated concerning cardiovascular diseases. One important aspect is the detection and management of potentially thrombogenic arrhythmias such as atrial fibrillation. While atrial fibrillation is the most common arrhythmia with a lifetime risk of one in three persons and an increased risk of thromboembolic complications such as stroke, many atrial fibrillation episodes are asymptomatic and a first diagnosis is oftentimes only reached after an embolic event. Therefore, screening for atrial fibrillation represents an important part of clinical practice. Novel technologies such as machine learning have the potential to substantially improve patient care and clinical outcomes. Additionally, machine learning applications may aid cardiologists in the management of patients with already diagnosed atrial fibrillation, for example, by identifying patients at a high risk of recurrence after catheter ablation. We summarize the current state of evidence concerning machine learning and, in particular, artificial neural networks in the detection and management of atrial fibrillation and describe possible future areas of development as well as pitfalls. Typical data flow in machine learning applications for atrial fibrillation detection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Ablação por Cateter / Acidente Vascular Cerebral Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Clin Res Cardiol Assunto da revista: CARDIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Ablação por Cateter / Acidente Vascular Cerebral Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Clin Res Cardiol Assunto da revista: CARDIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha