Your browser doesn't support javascript.
loading
Red Display for Three-Color Electrophoretic Displays with High Saturation via a Separation Stage between Black and Red Particles.
Liu, Linwei; Zeng, Wenjun; Long, Zhengxing; Yi, Zichuan; Bai, Pengfei; Tang, Biao; Yuan, Dong; Zhou, Guofu.
Afiliação
  • Liu L; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
  • Zeng W; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
  • Long Z; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
  • Yi Z; College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zongshan 528402, China.
  • Bai P; College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zongshan 528402, China.
  • Tang B; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
  • Yuan D; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
  • Zhou G; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
Materials (Basel) ; 15(7)2022 Mar 31.
Article em En | MEDLINE | ID: mdl-35407886
ABSTRACT
A three-color electrophoretic display (EPD) can solve the defect of an insufficient color display of black/white EPDs, but it is difficult to achieve a high red saturation due to the same driving polarity between black and red electrophoretic particles. In this work, a separation stage was proposed in the driving process to increase the red saturation in three-color EPDs. Firstly, red particles' motion was analyzed by the electrophoretic theory and Stokes' theorem to optimize driving parameters. Secondly, the activity of black particles was analyzed by testing different driving process parameters, and an optimal activation parameter for red particles was obtained. Next, the separation stage parameters were analyzed to reduce the mixing degree of black and red electrophoretic particles. Experimental results showed that the red and black electrophoretic particles could be effectively separated. Compared with an existing driving method, the red saturation was increased by 23.4%.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China