Analysis of Salmonella enterica Isolated from a Mixed-Use Watershed in Georgia, USA: Antimicrobial Resistance, Serotype Diversity, and Genetic Relatedness to Human Isolates.
Appl Environ Microbiol
; 88(10): e0039322, 2022 05 24.
Article
em En
| MEDLINE
| ID: mdl-35532233
As the cases of Salmonella enterica infections associated with contaminated water are increasing, this study was conducted to address the role of surface water as a reservoir of S. enterica serotypes. We sampled rivers and streams (n = 688) over a 3-year period (2015 to 2017) in a mixed-use watershed in Georgia, USA, and 70.2% of the total stream samples tested positive for Salmonella. A total of 1,190 isolates were recovered and characterized by serotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). A wide range of serotypes was identified, including those commonly associated with humans and animals, with S. enterica serotype Muenchen being predominant (22.7%) and each serotype exhibiting a high degree of strain diversity by PFGE. About half (46.1%) of the isolates had PFGE patterns indistinguishable from those of human clinical isolates in the CDC PulseNet database. A total of 52 isolates (4.4%) were resistant to antimicrobials, out of which 43 isolates were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). These 52 resistant Salmonella isolates were screened for the presence of antimicrobial resistance genes, plasmid replicons, and class 1 integrons, out of which four representative MDR isolates were selected for whole-genome sequencing analysis. The results showed that 28 MDR isolates resistant to 10 antimicrobials had blacmy-2 on an A/C plasmid. Persistent contamination of surface water with a high diversity of Salmonella strains, some of which are drug resistant and genetically indistinguishable from human isolates, supports a role of environmental surface water as a reservoir for and transmission route of this pathogen. IMPORTANCE Salmonella has been traditionally considered a foodborne pathogen, as it is one of the most common etiologies of foodborne illnesses worldwide; however, recent Salmonella outbreaks attributed to fresh produce and water suggest a potential environmental source of Salmonella that causes some human illnesses. Here, we investigated the prevalence, diversity, and antimicrobial resistance of Salmonella isolated from a mixed-use watershed in Georgia, USA, in order to enhance the overall understanding of waterborne Salmonella. The persistence and widespread distribution of Salmonella in surface water confirm environmental sources of the pathogen. A high proportion of waterborne Salmonella with clinically significant serotypes and genetic similarity to strains of human origin supports the role of environmental water as a significant reservoir of Salmonella and indicates a potential waterborne transmission of Salmonella to humans. The presence of antimicrobial-resistant and MDR Salmonella demonstrates additional risks associated with exposure to contaminated environmental water.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Infecções por Salmonella
/
Salmonella enterica
Tipo de estudo:
Risk_factors_studies
Limite:
Animals
/
Humans
País/Região como assunto:
America do norte
Idioma:
En
Revista:
Appl Environ Microbiol
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos