Your browser doesn't support javascript.
loading
Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure.
Gao, Huan; Ye, Jinyu; Zhao, Runyu; Zhan, Manjun; Yang, Guangping; Yu, Ran.
Afiliação
  • Gao H; Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast Univer
  • Ye J; Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast Univer
  • Zhao R; Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast Univer
  • Zhan M; Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China.
  • Yang G; Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu 210019, China.
  • Yu R; Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast Univer
Sci Total Environ ; 842: 156911, 2022 Oct 10.
Article em En | MEDLINE | ID: mdl-35753480
ABSTRACT
The impacts of quorum sensing (QS) on nanoparticle (NP)-stressed biological nitrogen removal (BNR) system have seldom been addressed yet. In this study, the contributions of endogenous N-acyl-homoserine lactone (AHL)-based QS regulation to the BNR system's adaptation to the zinc oxide (ZnO) NP stress and its recovery potential were systematically investigated. Although 1 mg/L ZnO NPs exerted little impact on the BNR system, chronic exposure to 10 mg/L ones depressed the system's BNR performance which irreversibly impaired the nitrification process even when the system entered the recovery period with no NP added anymore. Meanwhile, ZnO NPs exhibited hormesis effects on the production of AHLs and extracellular polymeric substance (EPS), and activities of superoxide dismutase and catalase. During the ZnO NP exposure period, C4-HSL, C6-HSL, and C10-HSL were discovered to be positively associated with nitrogen removal efficiency, tightly-bound EPS production, and antioxidase activities. Besides, the shifts of Nitrospira, Dechloromonas, Aeromonas, Acinetobacter, Delftia, and Bosea were expected to determine the AHL's dynamic distribution. During the system's recovery stage, Dechloromonas replaced Candidatus_Competibacter as the dominant denitrification-related genus. Dechloromonas abundance elevated with the increased contents of C4-HSL in the aqueous and EPS phases and C10-HSL in EPS and sludge phases, and were expected to promote the activities of BNR-related and antioxidant enzymes, and the EPS production to assist in the recovery of the impaired system's BNR performance. The QS-related BNR genera exhibited higher resilience to ZnO NPs than quorum quenching-related ones, indicating their critical role in nitrogen removal in the restored system. This work provided an insight into the potential pluripotency of AHL-based QS regulation on the ZnO NP-stressed BNR system's adaptation and recovery.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxido de Zinco / Acil-Butirolactonas Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxido de Zinco / Acil-Butirolactonas Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article