Your browser doesn't support javascript.
loading
Excellent removal performance of 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer towards phenanthrene and 9-phenanthrol: Experimental, modeling and DFT calculations studies.
Wei, Zhengwen; Lü, Xiang-Fei; Wang, Wei; Mele, Giuseppe; Jiang, Zhen-Yi.
Afiliação
  • Wei Z; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China.
  • Lü XF; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China.
  • Wang W; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China. Electronic address: wwchem@126.com.
  • Mele G; Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy.
  • Jiang ZY; Institute of Modern Physics, Northwest University, Xi'an, Shaanxi, 710054, China.
J Hazard Mater ; 441: 129920, 2023 01 05.
Article em En | MEDLINE | ID: mdl-36099739
ABSTRACT
Phenanthrene (PTH) and 9-phenanthrol (9-PTH) exhibited severe health threats and ecological hazards, for this reason, exploring a high-efficient removing strategy for PTH and 9-PTH could be considered of great urgency. Herein the 4,4'-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer (magnetic BIPH-PHEN) was successfully fabricated via Schiff base polycondensation reaction and the subsequently one-pot embedded method. The mutual aromatic nucleus of BIPH-PHEN polymer and PTH/9-PTH could form π-π interaction, thus improving the capture ability, the embedded Fe3O4 nanoparticles provided the possibility for rapid separation. The physical and chemical properties of the magnetic BIPH-PHEN were systematically characterized. The removal rate of magnetic BIPH-PHEN towards PTH and 9-PTH was 85.65 % and 98.52 %, respectively (PTH or 9-PTH 8 mg/L; Adsorbent 0.2 g/L). The DFT calculations including energy calculations and electrostatic potential distribution analyzed the different bonding modes and proposed the most possible bonding modes in the adsorbent/adsorbate system. Moreover, the LUMO and HOMO orbits combined with energy gaps analysis proved the existence and specific types of the π-π interaction. The monolayer adsorption occurred on the homogeneous magnetic BIPH-PHEN surface, simultaneously the chemisorption was dominant. This work not only proposed new sights on assembling magnetic Schiff base polymer for removing polycyclic aromatic hydrocarbons, but also provided a deeper understanding of intramolecular interactions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenantrenos / Hidrocarbonetos Policíclicos Aromáticos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenantrenos / Hidrocarbonetos Policíclicos Aromáticos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China