Your browser doesn't support javascript.
loading
Aldehyde Dehydrogenase 2 Activator Augments the Beneficial Effects of Empagliflozin in Mice with Diabetes-Associated HFpEF.
Pan, Guodong; Roy, Bipradas; Giri, Shailendra; Lanfear, David E; Thandavarayan, Rajarajan A; Guha, Ashrith; Ortiz, Pablo A; Palaniyandi, Suresh Selvaraj.
Afiliação
  • Pan G; Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA.
  • Roy B; Department of Physiology, Wayne State University, Detroit, MI 48202, USA.
  • Giri S; Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA.
  • Lanfear DE; Department of Physiology, Wayne State University, Detroit, MI 48202, USA.
  • Thandavarayan RA; Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
  • Guha A; Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI 48202, USA.
  • Ortiz PA; Center for Health Policy and Health Services Research, Henry Ford Hospital, Detroit, MI 48202, USA.
  • Palaniyandi SS; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article em En | MEDLINE | ID: mdl-36142350
ABSTRACT
To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Insuficiência Cardíaca Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Insuficiência Cardíaca Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos