Your browser doesn't support javascript.
loading
Ultrafast Optical Nanoscopy of Carrier Dynamics in Silicon Nanowires.
Li, Jingang; Yang, Rundi; Rho, Yoonsoo; Ci, Penghong; Eliceiri, Matthew; Park, Hee K; Wu, Junqiao; Grigoropoulos, Costas P.
Afiliação
  • Li J; Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California94720, United States.
  • Yang R; Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California94720, United States.
  • Rho Y; Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California94720, United States.
  • Ci P; Physical & Life Sciences and NIF & Photon Sciences, Lawrence Livermore National Laboratory, Livermore, California94550, United States.
  • Eliceiri M; Department of Materials Science and Engineering, University of California, Berkeley, California94720, United States.
  • Park HK; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.
  • Wu J; Institute for Advanced Study, Shenzhen University, Shenzhen518060, China.
  • Grigoropoulos CP; Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California94720, United States.
Nano Lett ; 23(4): 1445-1450, 2023 Feb 22.
Article em En | MEDLINE | ID: mdl-36695528
Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe optical nanoscopy in the visible-near-infrared spectral region to characterize the carrier dynamics in silicon nanostructures. By coupling experiments with the point-dipole model, we resolve the size-dependent photoexcited carrier lifetime in individual silicon nanowires. We further demonstrate local carrier decay time mapping in silicon nanostructures with a sub-50 nm spatial resolution. Our study enables the nanoimaging of ultrafast carrier kinetics, which will find promising applications in the future design of a broad range of electronic, photonic, and optoelectronic devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos