Non-destructive prediction of yak meat freshness indicator by hyperspectral techniques in the oxidation process.
Food Chem X
; 17: 100541, 2023 Mar 30.
Article
em En
| MEDLINE
| ID: mdl-36845518
This study examined the potential of hyperspectral techniques for the rapid detection of characteristic indicators of yak meat freshness during the oxidation of yak meat. TVB-N values were determined by significance analysis as the characteristic index of yak meat freshness. Reflectance spectral information of yak meat samples (400-1000 nm) was collected by hyperspectral technology. The raw spectral information was processed by 5 methods and then principal component regression (PCR), support vector machine regression (SVR) and partial least squares regression (PLSR) were used to build regression models. The results indicated that the full-wavelength based on PCR, SVR, and PLSR models were shown greater performance in the prediction of TVB-N content. In order to improve the computational efficiency of the model, 9 and 11 characteristic wavelengths were selected from 128 wavelengths by successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS), respectively. The CARS-PLSR model exhibited excellent predictive power and model stability.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Food Chem X
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China