Your browser doesn't support javascript.
loading
Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts.
Hu, Sen; Xiang, Cuili; Zou, Yongjin; Xu, Fen; Sun, Lixian.
Afiliação
  • Hu S; School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China.
  • Xiang C; School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
  • Zou Y; School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China.
  • Xu F; School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
  • Sun L; School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
Nanomaterials (Basel) ; 13(12)2023 Jun 16.
Article em En | MEDLINE | ID: mdl-37368301
As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm-2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China