PI3K-C2ß limits mTORC1 signaling and angiogenic growth.
Sci Signal
; 16(813): eadg1913, 2023 11 28.
Article
em En
| MEDLINE
| ID: mdl-38015911
Phosphoinositide 3-kinases (PI3Ks) phosphorylate intracellular inositol lipids to regulate signaling and intracellular vesicular trafficking. Mammals have eight PI3K isoforms, of which class I PI3Kα and class II PI3K-C2α are essential for vascular development. The class II PI3K-C2ß is also abundant in endothelial cells. Using in vivo and in vitro approaches, we found that PI3K-C2ß was a critical regulator of blood vessel growth by restricting endothelial mTORC1 signaling. Mice expressing a kinase-inactive form of PI3K-C2ß displayed enlarged blood vessels without corresponding changes in endothelial cell proliferation or migration. Instead, inactivation of PI3K-C2ß resulted in an increase in the size of endothelial cells, particularly in the sprouting zone of angiogenesis. Mechanistically, we showed that the aberrantly large size of PI3K-C2ß mutant endothelial cells was caused by mTORC1 activation, which sustained growth in these cells. Consistently, pharmacological inhibition of mTORC1 with rapamycin normalized vascular morphogenesis in PI3K-C2ß mutant mice. Together, these results identify PI3K-C2ß as a crucial determinant of endothelial signaling and illustrate the importance of mTORC1 regulation during angiogenic growth.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fosfatidilinositol 3-Quinases
/
Células Endoteliais
Limite:
Animals
Idioma:
En
Revista:
Sci Signal
Assunto da revista:
CIENCIA
/
FISIOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Espanha