Your browser doesn't support javascript.
loading
Deep residual networks for crystallography trained on synthetic data.
Mendez, Derek; Holton, James M; Lyubimov, Artem Y; Hollatz, Sabine; Mathews, Irimpan I; Cichosz, Aleksander; Martirosyan, Vardan; Zeng, Teo; Stofer, Ryan; Liu, Ruobin; Song, Jinhu; McPhillips, Scott; Soltis, Mike; Cohen, Aina E.
Afiliação
  • Mendez D; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Holton JM; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Lyubimov AY; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Hollatz S; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Mathews II; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Cichosz A; Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA.
  • Martirosyan V; Department of Mathematics, UC Santa Barbara, Santa Barbara, CA 93106, USA.
  • Zeng T; Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA.
  • Stofer R; Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA.
  • Liu R; Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA.
  • Song J; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • McPhillips S; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Soltis M; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Cohen AE; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 26-43, 2024 Jan 01.
Article em En | MEDLINE | ID: mdl-38164955
ABSTRACT
The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Síncrotrons Idioma: En Revista: Acta Crystallogr D Struct Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Síncrotrons Idioma: En Revista: Acta Crystallogr D Struct Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos