Your browser doesn't support javascript.
loading
SARS-CoV-2 BA.1 and BA.2 breakthrough infections boost antibody responses to early Omicron subvariants but not BQ.1.1 or XBB.1.5.
Abbad, Anass; Yellin, Temima; Singh, Gagandeep; Fried, Miriam; Raskin, Ariel; Tcheou, Johnstone; Monahan, Brian; Gleason, Charles; Simon, Viviana; Carreño, Juan Manuel; Krammer, Florian.
Afiliação
  • Abbad A; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Yellin T; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Singh G; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Fried M; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Raskin A; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Tcheou J; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Monahan B; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Gleason C; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Simon V; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at
  • Carreño JM; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address: jm.carreno@mssm.edu.
  • Krammer F; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at
Cell Rep Med ; 5(3): 101474, 2024 Mar 19.
Article em En | MEDLINE | ID: mdl-38508136
ABSTRACT
Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 / Formação de Anticorpos Limite: Humans Idioma: En Revista: Cell Rep Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 / Formação de Anticorpos Limite: Humans Idioma: En Revista: Cell Rep Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos