Your browser doesn't support javascript.
loading
Harnessing a T1 Phage-Derived Spanin for Developing Phage-Based Antimicrobial Development.
Yamashita, Wakana; Ojima, Shinjiro; Tamura, Azumi; Azam, Aa Haeruman; Kondo, Kohei; Yuancheng, Zhang; Cui, Longzhu; Shintani, Masaki; Suzuki, Masato; Takahashi, Yoshimasa; Watashi, Koichi; Tsuneda, Satoshi; Kiga, Kotaro.
Afiliação
  • Yamashita W; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
  • Ojima S; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
  • Tamura A; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
  • Azam AH; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
  • Kondo K; Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
  • Yuancheng Z; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
  • Cui L; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
  • Shintani M; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
  • Suzuki M; Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan.
  • Takahashi Y; Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan.
  • Watashi K; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan.
  • Tsuneda S; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
  • Kiga K; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
Biodes Res ; 6: 0028, 2024.
Article em En | MEDLINE | ID: mdl-38516182
ABSTRACT
The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents. Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise; however, a thorough comparison and evaluation of their bactericidal efficacy are lacking. This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes, with the goal of harnessing them for antibacterial therapy. First, we examined the bactericidal activity of spanins, endolysins, and holins derived from 2 Escherichia coli model phages, T1 and T7. Among these, T1-spanin exhibited the highest bactericidal activity against E. coli. Subsequently, we expressed T1-spanin within bacterial cells and assessed its bactericidal activity. T1-spanin showed potent bactericidal activity against all clinical isolates tested, including bacterial strains of 111 E. coli, 2 Acinetobacter spp., 3 Klebsiella spp., and 3 Pseudomonas aeruginosa. In contrast, T1 phage-derived endolysin showed bactericidal activity against E. coli and P. aeruginosa, yet its efficacy against other bacteria was inferior to that of T1-spanin. Finally, we developed a phage-based technology to introduce the T1-spanin gene into target bacteria. The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria. The potent bactericidal activity exhibited by spanins, combined with the novel phage synthetic technology, holds promise for the development of innovative antimicrobial agents.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biodes Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biodes Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão