Your browser doesn't support javascript.
loading
Droplet-Based Direct-Current Electricity Generation Induced by Dynamic Electric Double Layers.
Pan, Chongxiang; Meng, Jia; Jia, Luyao; Pu, Xiong.
Afiliação
  • Pan C; Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China.
  • Meng J; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
  • Jia L; Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China.
  • Pu X; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
ACS Appl Mater Interfaces ; 16(14): 17649-17656, 2024 Apr 10.
Article em En | MEDLINE | ID: mdl-38552212
ABSTRACT
Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply. Here, a direct current droplet-based electricity generator (DC-DEG) is developed by the simple configuration of the electrodes. The DC output originates from the dynamical electric double layer (EDL) formed at two electrodes and droplet interfaces where the charging/discharging process of EDL capacitance occurs. Several experiments are exhibited to demonstrate the rationality of the proposed principle. The influence of some factors on the output is investigated for further insight into the DC-DEG device. This work provides a novel strategy to harvest energy from water droplets directly into DC electricity and may expand the application of DEGs in powering electronic devices without the help of rectifiers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article