Your browser doesn't support javascript.
loading
NKUT: Dataset and Benchmark for Pediatric Mandibular Wisdom Teeth Segmentation.
IEEE J Biomed Health Inform ; 28(6): 3523-3533, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38557613
ABSTRACT
Germectomy is a common surgery in pediatric dentistry to prevent the potential dangers caused by impacted mandibular wisdom teeth. Segmentation of mandibular wisdom teeth is a crucial step in surgery planning. However, manually segmenting teeth and bones from 3D volumes is time-consuming and may cause delays in treatment. Deep learning based medical image segmentation methods have demonstrated the potential to reduce the burden of manual annotations, but they still require a lot of well-annotated data for training. In this paper, we initially curated a Cone Beam Computed Tomography (CBCT) dataset, NKUT, for the segmentation of pediatric mandibular wisdom teeth. This marks the first publicly available dataset in this domain. Second, we propose a semantic separation scale-specific feature fusion network named WTNet, which introduces two branches to address the teeth and bones segmentation tasks. In WTNet, We design a Input Enhancement (IE) block and a Teeth-Bones Feature Separation (TBFS) block to solve the feature confusions and semantic-blur problems in our task. Experimental results suggest that WTNet performs better on NKUT compared to previous state-of-the-art segmentation methods (such as TransUnet), with a maximum DSC lead of nearly 16%.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Dados Factuais / Tomografia Computadorizada de Feixe Cônico / Aprendizado Profundo / Dente Serotino Limite: Child / Humans Idioma: En Revista: IEEE J Biomed Health Inform Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Dados Factuais / Tomografia Computadorizada de Feixe Cônico / Aprendizado Profundo / Dente Serotino Limite: Child / Humans Idioma: En Revista: IEEE J Biomed Health Inform Ano de publicação: 2024 Tipo de documento: Article