Your browser doesn't support javascript.
loading
Phonon-Driven Femtosecond Dynamics of Excitons in Crystalline Pentacene from First Principles.
Cohen, Galit; Haber, Jonah B; Neaton, Jeffrey B; Qiu, Diana Y; Refaely-Abramson, Sivan.
Afiliação
  • Cohen G; Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Haber JB; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA.
  • Neaton JB; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Qiu DY; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA.
  • Refaely-Abramson S; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett ; 132(12): 126902, 2024 Mar 22.
Article em En | MEDLINE | ID: mdl-38579218
ABSTRACT
Nonradiative exciton relaxation processes are critical for energy transduction and transport in optoelectronic materials, but how these processes are connected to the underlying crystal structure and the associated electron, exciton, and phonon band structures, as well as the interactions of all these particles, is challenging to understand. Here, we present a first-principles study of exciton-phonon relaxation pathways in pentacene, a paradigmatic molecular crystal and optoelectronic semiconductor. We compute the momentum- and band-resolved exciton-phonon interactions, and use them to analyze key scattering channels. We find that both exciton intraband scattering and interband scattering to parity-forbidden dark states occur on the same ∼100 fs timescale as a direct consequence of the longitudinal-transverse splitting of the bright exciton band. Consequently, exciton-phonon scattering exists as a dominant nonradiative relaxation channel in pentacene. We further show how the propagation of an exciton wave packet is connected with crystal anisotropy, which gives rise to the longitudinal-transverse exciton splitting and concomitant anisotropic exciton and phonon dispersions. Our results provide a framework for understanding the role of exciton-phonon interactions in exciton nonradiative lifetimes in molecular crystals and beyond.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Israel