Your browser doesn't support javascript.
loading
Numerically Exact Simulation of Photodoped Mott Insulators.
Künzel, Fabian; Erpenbeck, André; Werner, Daniel; Arrigoni, Enrico; Gull, Emanuel; Cohen, Guy; Eckstein, Martin.
Afiliação
  • Künzel F; Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany.
  • Erpenbeck A; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Werner D; Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria.
  • Arrigoni E; Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria.
  • Gull E; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Cohen G; The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel.
  • Eckstein M; School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
Phys Rev Lett ; 132(17): 176501, 2024 Apr 26.
Article em En | MEDLINE | ID: mdl-38728727
ABSTRACT
A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address exponentially separated timescales. We demonstrate how properties of such states can be computed using numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a time-local ansatz for the distribution function with separate Fermi functions for the electron and hole quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the photodoped state has hole and electron quasiparticles with strongly renormalized properties.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha