Your browser doesn't support javascript.
loading
Gate-All-Around Nanopore Osmotic Power Generators.
Tsutsui, Makusu; Hsu, Wei-Lun; Garoli, Denis; Leong, Iat Wai; Yokota, Kazumichi; Daiguji, Hirofumi; Kawai, Tomoji.
Afiliação
  • Tsutsui M; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan.
  • Hsu WL; Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
  • Garoli D; Optoelectronics Research Line, Instituto Italiano di Tecnologia, Morego 30, I-16163 Genova, Italy.
  • Leong IW; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan.
  • Yokota K; National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan.
  • Daiguji H; Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
  • Kawai T; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5267-0047, Japan.
ACS Nano ; 18(23): 15046-15054, 2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38804145
ABSTRACT
Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão