Pyrimidine compounds BY4003 and BY4008 inhibit glioblastoma cells growth via modulating JAK3/STAT3 signaling pathway.
Neurotherapeutics
; 21(5): e00431, 2024 Sep.
Article
em En
| MEDLINE
| ID: mdl-39153914
ABSTRACT
Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pirimidinas
/
Neoplasias Encefálicas
/
Transdução de Sinais
/
Glioblastoma
/
Proliferação de Células
/
Fator de Transcrição STAT3
/
Janus Quinase 3
Limite:
Humans
Idioma:
En
Revista:
Neurotherapeutics
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China