Your browser doesn't support javascript.
loading
Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks.
Reddick, W E; Glass, J O; Cook, E N; Elkin, T D; Deaton, R J.
Afiliação
  • Reddick WE; Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. gene.reddick@stjude.org
IEEE Trans Med Imaging ; 16(6): 911-8, 1997 Dec.
Article em En | MEDLINE | ID: mdl-9533591
We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; seven male, seven female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (ri) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in five volunteers imaged five times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 1997 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 1997 Tipo de documento: Article País de afiliação: Estados Unidos