Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9570-9581, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781138

RESUMO

The increasing level of O3 pollution in China significantly exacerbates the long-term O3 health damage, and an optimized health-oriented strategy for NOx and VOCs emission abatement is needed. Here, we developed an integrated evaluation and optimization system for the O3 control strategy by merging a response surface model for the O3-related mortality and an optimization module. Applying this system to the Yangtze River Delta (YRD), we evaluated driving factors for mortality changes from 2013 to 2017, quantified spatial and temporal O3-related mortality responses to precursor emission abatement, and optimized a health-oriented control strategy. Results indicate that insufficient NOx emission abatement combined with deficient VOCs control from 2013 to 2017 aggravated O3-related mortality, particularly during spring and autumn. Northern YRD should promote VOCs control due to higher VOC-limited characteristics, whereas fastening NOx emission abatement is more favorable in southern YRD. Moreover, promotion of NOx mitigation in late spring and summer and facilitating VOCs control in spring and autumn could further reduce O3-related mortality by nearly 10% compared to the control strategy without seasonal differences. These findings highlight that a spatially and temporally differentiated NOx and VOCs emission control strategy could gain more O3-related health benefits, offering valuable insights to regions with severe ozone pollution all over the world.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , China , Poluentes Atmosféricos , Humanos , Óxidos de Nitrogênio
2.
Environ Sci Technol ; 57(11): 4424-4433, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36898019

RESUMO

A big gap exists between current air quality in China and the World Health Organization (WHO) global air quality guidelines (AQG) released in 2021. Previous studies on air pollution control have focused on emission reduction demand in China but ignored the influence of transboundary pollution, which has been proven to have a significant impact on air quality in China. Here, we develop an emission-concentration response surface model coupled with transboundary pollution to quantify the emission reduction demand for China to achieve WHO AQG. China cannot achieve WHO AQG by its own emission reduction for high transboundary pollution of both PM2.5 and O3. Reducing transboundary pollution will loosen the reduction demand for NH3 and VOCs emissions in China. However, to meet 10 µg·m-3 for PM2.5 and 60 µg·m-3 for peak season O3, China still needs to reduce its emissions of SO2, NOx, NH3, VOCs, and primary PM2.5 by more than 95, 95, 76, 62, and 96% respectively, on the basis of 2015. We highlight that both extreme emission reduction in China and great efforts in addressing transboundary air pollution are crucial to reach WHO AQG.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Organização Mundial da Saúde
3.
J Environ Sci (China) ; 123: 281-291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521990

RESUMO

PM2.5 concentrations have dramatically reduced in key regions of China during the period 2013-2017, while O3 has increased. Hence there is an urgent demand to develop a synergetic regional PM2.5 and O3 control strategy. This study develops an emission-to-concentration response surface model and proposes a synergetic pathway for PM2.5 and O3 control in the Yangtze River Delta (YRD) based on the framework of the Air Benefit and Cost and Attainment Assessment System (ABaCAS). Results suggest that the regional emissions of NOx, SO2, NH3, VOCs (volatile organic compounds) and primary PM2.5 should be reduced by 18%, 23%, 14%, 17% and 33% compared with 2017 to achieve 25% and 5% decreases of PM2.5 and O3 in 2025, and that the emission reduction ratios will need to be 50%, 26%, 28%, 28% and 55% to attain the National Ambient Air Quality Standard. To effectively reduce the O3 pollution in the central and eastern YRD, VOCs controls need to be strengthened to reduce O3 by 5%, and then NOx reduction should be accelerated for air quality attainment. Meanwhile, control of primary PM2.5 emissions shall be prioritized to address the severe PM2.5 pollution in the northern YRD. For most cities in the YRD, the VOCs emission reduction ratio should be higher than that for NOx in Spring and Autumn. NOx control should be increased in summer rather than winter when a strong VOC-limited regime occurs. Besides, regarding the emission control of industrial processes, on-road vehicle and residential sources shall be prioritized and the joint control area should be enlarged to include Shandong, Jiangxi and Hubei Province for effective O3 control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Material Particulado/análise , Rios , Ozônio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China
4.
Environ Sci Technol ; 56(2): 739-749, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962805

RESUMO

Serious ambient PM2.5 and O3 pollution is one of the most important environmental challenges of China, necessitating an urgent cost-effective cocontrol strategy. Herein, we introduced a novel integrated assessment system to optimize a NOx and volatile organic compound (VOC) control strategy for the synergistic reduction of ambient PM2.5 and O3 pollution. Focusing on the Beijing-Tianjin-Hebei cities and their surrounding regions, which are experiencing the most serious PM2.5 and O3 pollution in China, we found that NOx emission reduction (64-81%) is essential to attain the air quality standard no matter how much VOC emission is reduced. However, the synergistic VOC control is strongly recommended considering its substantially human health and crop production benefits, which are estimated up to 163 (PM2.5-related) and 101 (O3-related) billion CHY during the reduction of considerable emissions. Notably, such benefits will be greatly reduced if the synergistic VOC reduction is delayed. This study also highlights the necessity of simultaneous VOC and NOx emission control in winter while enhancing the NOx control in the summer, which is contrary to the current control strategy adopted in China. These findings point out the right pathways for future policy making on comitigating PM2.5 and O3 pollution in China and other countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise
5.
Sci Total Environ ; 859(Pt 1): 160116, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36379329

RESUMO

Ammonia (NH3) abatement remains controversial in China owing to its effectiveness in reducing PM2.5 pollution and nitrogen deposition but with the potential risk of promoting acid rain formation, necessitating scientific guidance. Here, we propose a novel method for designing an NH3 control strategy to mitigate both air pollution and nitrogen deposition without significantly exacerbating acid rain. This method involves extending the response surface model (RSM) to deposition using a delicately developed polynomial response function of deposition (i.e., dep-RSM). The Yangtze River Delta (YRD) dep-RSM application reveals that 16 out of 41 cities have NH3 control potentials from 15 % to 71 %. Excellent NH3 control potentials have been noted between April and June (78 %-92 %). From 2013 to 2017, the effective SO2 and NOx control significantly reduced wet sulfur and oxidized nitrogen deposition, providing considerable NH3 abatement potentials (15 %-24 %) to further reduce PM2.5 and nitrogen deposition by up to 2 % and 9 %, respectively, without acid rain exacerbation (the wet neutralization factor was maintained). Additionally, 57 % and 73 % NH3 emission reduction potentials were obtained under acid rain constraints with 75 % and 86 % reductions in the other precursors to reduce the average PM2.5 concentration below 25 and 15 µg/m3, and an additional 8408 and 14,459 premature deaths could only be avoided at an extra cost of 8.7 and 19.7 billion CNY, respectively. Meanwhile, the N deposition considerably reduced by 10 and 13 kgN/ha·yr. However, the YRD region could still simultaneously obtain substantial amounts of PM2.5 and N deposition mitigation using the strategy proposed herein. The expanded optimization system can be directly adopted by policymakers to implement coordinated control in regions or countries facing the same NH3 control conundrum.


Assuntos
Chuva Ácida , Poluentes Atmosféricos , Poluição do Ar , Humanos , Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China
6.
Environ Pollut ; 308: 119646, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718044

RESUMO

NH3 emission control has proven to be of great importance in reducing PM2.5 concentrations in China, while how it affects nitrogen/sulfur (N/S) deposition is still unclear. This study expanded the response surface model method to quantify the responses of N/S deposition to the emission control of precursors (NOx, SO2, NH3, VOCs and primary PM2.5) in the Yangtze River Delta, China. NH3 control was found to have higher efficiency in reducing N/S deposition than NOx and SO2 alone. The reduced N deposition response to NH3 emission control was higher in the northern part of the YRD region, whereas oxidized N deposition decreased sharply in the region with a low N critical load. Synergetic effect was found in reducing N deposition when we controlled the NH3 and NOx emissions simultaneously. Compared with the sum effect of individual NH3 and NOx emission control, the extra benefits from the synergy controls accounted for 4.4% (1.23 kg N·ha-1·yr-1) of the total N deposition, of which 81% came from the oxidized N deposition. The YRD region could receive the largest synergetic effect with a 1:1 ratio of NOx:NH3 emission reduction. The NH3 emission control increases the dry deposition of acid substances and worsens acid rain though it reduces the wet S/oxidized N deposition. These findings highlight the effectiveness of NH3 emission control and suggest a multi-pollutant control strategy for reducing N/S deposition. The response surface model method for deposition also provides a reference for other regions in China and other countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental/métodos , Nitrogênio/análise , Material Particulado/análise , Rios , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA