Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Intervalo de ano de publicação
1.
Public Health Nutr ; 26(8): 1686-1695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36793234

RESUMO

OBJECTIVE: Household air pollution (HAP) is a widespread environmental exposure worldwide. While several cleaner fuel interventions have been implemented to reduce personal exposures to HAP, it is unclear if cooking with cleaner fuels also affects the choice of meals and dietary intake. DESIGN: Individually randomised, open-label controlled trial of a HAP intervention. We aimed to determine the effect of a HAP intervention on dietary and Na intake. Intervention participants received a liquefied petroleum gas (LPG) stove, continuous fuel delivery and behavioural messaging during 1 year whereas control participants continued with usual cooking practices that involved the use of biomass-burning stoves. Dietary outcomes included energy, energy-adjusted macronutrients and Na intake at baseline, 6 months and 12 months post-randomisation using 24-h dietary recalls and 24-h urine. We used t-tests to estimate differences between arms in the post-randomisation period. SETTING: Rural settings in Puno, Peru. PARTICIPANTS: One hundred women aged 25-64 years. RESULTS: At baseline, control and intervention participants were similar in age (47·4 v. 49·5 years) and had similar daily energy (8894·3 kJ v. 8295·5 kJ), carbohydrate (370·8 g v. 373·3 g) and Na intake (4·9 g v. 4·8 g). One year after randomisation, we did not find differences in average energy intake (9292·4 kJ v. 8788·3 kJ; P = 0·22) or Na intake (4·5 g v. 4·6 g; P = 0·79) between control and intervention participants. CONCLUSIONS: Our HAP intervention consisting of an LPG stove, continuous fuel distribution and behavioural messaging did not affect dietary and Na intake in rural Peru.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Petróleo , Sódio na Dieta , Adulto , Feminino , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Peru , Culinária , População Rural
2.
Am J Respir Crit Care Med ; 203(11): 1386-1397, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306939

RESUMO

Rationale: Approximately 40% of people worldwide are exposed to household air pollution (HAP) from the burning of biomass fuels. Previous efforts to document health benefits of HAP mitigation have been stymied by an inability to lower emissions to target levels. Objectives: We sought to determine if a household air pollution intervention with liquefied petroleum gas (LPG) improved cardiopulmonary health outcomes in adult women living in a resource-poor setting in Peru. Methods: We conducted a randomized controlled field trial in 180 women aged 25-64 years living in rural Puno, Peru. Intervention women received an LPG stove, continuous fuel delivery for 1 year, education, and behavioral messaging, whereas control women were asked to continue their usual cooking practices. We assessed for stove use adherence using temperature loggers installed in both LPG and biomass stoves of intervention households. Measurements and Main Results: We measured blood pressure, peak expiratory flow (PEF), and respiratory symptoms using the St. George's Respiratory Questionnaire at baseline and at 3-4 visits after randomization. Intervention women used their LPG stove exclusively for 98% of days. We did not find differences in average postrandomization systolic blood pressure (intervention - control 0.7 mm Hg; 95% confidence interval, -2.1 to 3.4), diastolic blood pressure (0.3 mm Hg; -1.5 to 2.0), prebronchodilator peak expiratory flow/height2 (0.14 L/s/m2; -0.02 to 0.29), postbronchodilator peak expiratory flow/height2 (0.11 L/s/m2; -0.05 to 0.27), or St. George's Respiratory Questionnaire total score (-1.4; -3.9 to 1.2) over 1 year in intention-to-treat analysis. There were no reported harms related to the intervention. Conclusions: We did not find evidence of a difference in blood pressure, lung function, or respiratory symptoms during the year-long intervention with LPG. Clinical trial registered with www.clinicaltrials.gov (NCT02994680).


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Biomassa , Culinária/métodos , Petróleo , Saúde da População Rural/estatística & dados numéricos , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Peru
3.
Environ Int ; 146: 106196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160161

RESUMO

BACKGROUND: Liquefied petroleum gas (LPG) stoves have been promoted in low- and middle-income countries (LMICs) as a clean energy alternative to biomass burning cookstoves. OBJECTIVE: We sought to characterize kitchen area concentrations and personal exposures to nitrogen dioxide (NO2) within a randomized controlled trial in the Peruvian Andes. The intervention included the provision of an LPG stove and continuous fuel distribution with behavioral messaging to maximize compliance. METHODS: We measured 48-hour kitchen area NO2 concentrations at high temporal resolution in homes of 50 intervention participants and 50 control participants longitudinally within a biomass-to-LPG intervention trial. We also collected 48-hour mean personal exposures to NO2 among a subsample of 16 intervention and 9 control participants. We monitored LPG and biomass stove use continuously throughout the trial. RESULTS: In 367 post-intervention 24-hour kitchen area samples of 96 participants' homes, geometric mean (GM) highest hourly NO2 concentration was 138 ppb (geometric standard deviation [GSD] 2.1) in the LPG intervention group and 450 ppb (GSD 3.1) in the biomass control group. Post-intervention 24-hour mean NO2 concentrations were a GM of 43 ppb (GSD 1.7) in the intervention group and 77 ppb (GSD 2.0) in the control group. Kitchen area NO2 concentrations exceeded the WHO indoor hourly guideline an average of 1.3 h per day among LPG intervention participants. GM 48-hour personal exposure to NO2 was 5 ppb (GSD 2.4) among 35 48-hour samples of 16 participants in the intervention group and 16 ppb (GSD 2.3) among 21 samples of 9 participants in the control group. DISCUSSION: In a biomass-to-LPG intervention trial in Peru, kitchen area NO2 concentrations were substantially lower within the LPG intervention group compared to the biomass-using control group. However, within the LPG intervention group, 69% of 24-hour kitchen area samples exceeded WHO indoor annual guidelines and 47% of samples exceeded WHO indoor hourly guidelines. Forty-eight-hour NO2 personal exposure was below WHO indoor annual guidelines for most participants in the LPG intervention group, and we did not measure personal exposure at high temporal resolution to assess exposure to cooking-related indoor concentration peaks. Further research is warranted to understand the potential health risks of LPG-related NO2 emissions and inform current campaigns which promote LPG as a clean-cooking option.


Assuntos
Poluição do Ar em Ambientes Fechados , Petróleo , Poluição do Ar em Ambientes Fechados/análise , Culinária , Humanos , Dióxido de Nitrogênio , Material Particulado/análise , Peru
4.
Energy Sustain Dev ; 46: 82-93, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30364502

RESUMO

INTRODUCTION: Over 80% of rural households in Peru use solid fuels as their primary source of domestic energy, which contributes to several health problems. In 2016, 6.7 million Peruvians were living in rural areas. The Fondo de Inclusión Social Energético (FISE) LPG Promotion Program, which began in 2012 and is housed under the Ministry of Energy and Mining, is a government-sponsored initiative aimed at reducing use of solid fuels by increasing access to clean fuel for cooking to poor Peruvian households. METHODS: We conducted a mixed methods study incorporating data from publicly available records and reports, a community survey of 375 households in Puno (the province with the largest number of FISE beneficiary households), and in-depth interviews with community members and key stakeholders. We used the Reach, Effectiveness - Adoption, Implementation, Maintenance (RE-AIM) framework to guide our data collection and analysis efforts. In a sample of 95 households, we also measured 48-hour area concentrations and personal exposures to fine particulate matter (PM2.5). RESULTS: The FISE LPG promotion program has achieved high geographical reach; the program is currently serving households in 100% of districts in Peru. Households with access to electricity may be participating at a higher level than households without electricity because the program is implemented primarily by electricity distributors. In a sample of 95 households, FISE beneficiaries experienced a reduction in kitchen concentrations of PM2.5; however, there were no differences in personal exposures, and both kitchen and personal exposures were above the WHO intermediate target for indoor air quality. Among the 375 households surveyed, stove stacking with biomass fuels was reported in more than 95% of both beneficiary and non-beneficiary households, with fewer than 5% reporting exclusive use. In-depth interviews suggest that the complexity of enrollment process and access to LPG distribution points may be key barriers to participating in FISE. CONCLUSION: The FISE LPG Program has achieved high reach and its targeted subsidy and surcharge-based financing structure represent a potentially feasible and sustainable model for other government programs. However, the prevalence of stove stacking among FISE beneficiaries remains high. There is a need for improved communication channels between program implementers and beneficiaries. FISE should also consider expanding the mobile LPG network and community delivery service to reduce physical barriers and indirect costs of LPG acquisition. Finally, increasing the value of LPG vouchers to completely cover one or two tanks a month, or alternatively, introducing behavior change strategies to reduce monthly LPG usage, may facilitate the transition to exclusive LPG use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA