Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(21): e2200821119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594401

RESUMO

Influenza virus hemagglutinin (HA) has been the primary target for influenza vaccine development. Broadly protective antibodies targeting conserved regions of the HA unlock the possibility of generating universal influenza immunity. Two group 2 influenza A chimeric HAs, cH4/3 and cH15/3, were previously designed to elicit antibodies to the conserved HA stem. Here, we show by X-ray crystallography and negative-stain electron microscopy that a broadly protective antistem antibody can stably bind to cH4/3 and cH15/3 HAs, thereby validating their potential as universal vaccine immunogens. Furthermore, flexibility was observed in the head domain of the chimeric HA structures, suggesting that antibodies could also potentially interact with the head interface epitope. Our structural and binding studies demonstrated that a broadly protective antihead trimeric interface antibody could indeed target the more open head domain of the cH15/3 HA trimer. Thus, in addition to inducing broadly protective antibodies against the conserved HA stem, chimeric HAs may also be able to elicit antibodies against the conserved trimer interface in the HA head domain, thereby increasing the vaccine efficacy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle
4.
Front Immunol ; 14: 1194073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313413

RESUMO

Objective: Antibodies elicited by seasonal influenza vaccines mainly target the head of hemagglutinin (HA). However, antibodies against the stalk domain are cross-reactive and have been proven to play a role in reducing influenza disease severity. We investigated the induction of HA stalk-specific antibodies after seasonal influenza vaccination, considering the age of the cohorts. Methods: A total of 166 individuals were recruited during the 2018 influenza vaccine campaign (IVC) and divided into groups: <50 (n = 14), 50-64 (n = 34), 65-79 (n = 61), and ≥80 (n = 57) years old. Stalk-specific antibodies were quantified by ELISA at day 0 and day 28 using recombinant viruses (cH6/1 and cH14/3) containing an HA head domain (H6 or H14) from wild bird origin with a stalk domain from human H1 or H3, respectively. The geometric mean titer (GMT) and the fold rise (GMFR) were calculated, and differences were assessed using ANOVA adjusted by the false discovery rate (FDR) and the Wilcoxon tests (p <0.05). Results: All age groups elicited some level of increase in anti-stalk antibodies after receiving the influenza vaccine, except for the ≥80-year-old cohort. Additionally, <65-year-old vaccinees had higher group 1 antibody titers versus group 2 before and after vaccination. Similarly, vaccinees within the <50-year-old group showed a higher increase in anti-stalk antibody titers when compared to older individuals (≥80 years old), especially for group 1 anti-stalk antibodies. Conclusion: Seasonal influenza vaccines can the induction of cross-reactive anti-stalk antibodies against group 1 and group 2 HAs. However, low responses were observed in older groups, highlighting the impact of immunosenescence in adequate humoral immune responses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Hemaglutininas , Formação de Anticorpos , Influenza Humana/prevenção & controle , Anticorpos
5.
J Virol ; 84(1): 21-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828604

RESUMO

Novel swine-origin influenza viruses of the H1N1 subtype were first detected in humans in April 2009. As of 12 August 2009, 180,000 cases had been reported globally. Despite the fact that they are of the same antigenic subtype as seasonal influenza viruses circulating in humans since 1977, these viruses continue to spread and have caused the first influenza pandemic since 1968. Here we show that a pandemic H1N1 strain replicates in and transmits among guinea pigs with similar efficiency to that of a seasonal H3N2 influenza virus. This transmission was, however, partially disrupted when guinea pigs had preexisting immunity to recent human isolates of either the H1N1 or H3N2 subtype and was fully blocked through daily intranasal administration of interferon to either inoculated or exposed animals. Our results suggest that partial immunity resulting from prior exposure to conventional human strains may blunt the impact of pandemic H1N1 viruses in the human population. In addition, the use of interferon as an antiviral prophylaxis may be an effective way to limit spread in at-risk populations.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/transmissão , Animais , Cobaias , Humanos , Imunidade , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Interferons/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Pré-Medicação/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-28663209

RESUMO

Influenza viruses cause seasonal epidemics as well as pandemics and are a significant concern for human health. Current influenza virus vaccines show efficacy when they are antigenically well matched to circulating strains. Seasonal influenza viruses undergo antigenic drift at a high rate and, therefore, current vaccines have to be reformulated and readministered on an annual basis. Mismatches between vaccine strains and circulating strains frequently occur, significantly decreasing vaccine efficacy. In addition, current seasonal influenza virus vaccines have limited efficacy against newly emerging pandemic viruses. A universal influenza virus vaccine that induces long-term protection against all influenza virus strains would abolish the need for annual readministration of seasonal influenza virus vaccines and would significantly enhance our pandemic preparedness. Here we discuss the characteristics of universal influenza virus vaccines, their potential target antigens, and critical aspects to consider on the path to successfully developing such vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Humanos
7.
Nat Commun, v. 12, 6197, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4045

RESUMO

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.

8.
Nat Rev Drug Discov ; 14(3): 167-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25722244

RESUMO

Influenza virus infections are a major public health concern and cause significant morbidity and mortality worldwide. Current influenza virus vaccines are an effective countermeasure against infection but need to be reformulated almost every year owing to antigenic drift. Furthermore, these vaccines do not protect against novel pandemic strains, and the timely production of pandemic vaccines remains problematic because of the limitations of current technology. Several improvements have been made recently to enhance immune protection induced by seasonal and pandemic vaccines, and to speed up production in case of a pandemic. Importantly, vaccine constructs that induce broad or even universal influenza virus protection are currently in preclinical and clinical development.


Assuntos
Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Antígenos Virais/imunologia , Defesa Civil , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA