Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Intervalo de ano de publicação
1.
Vaccine ; 40(37): 5529-5536, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35985887

RESUMO

Vaccine development is a complex process, starting with selection of a promising immunogen in the discovery phase, followed by process development in the preclinical phase, and later by clinical trials in tandem with process improvements and scale up. A large suite of analytical techniques is required to gain understanding of the vaccine candidate so that a relevant immunogen is selected and subsequently manufactured consistently throughout the lifespan of the product. For viral vaccines, successful immunogen production is contingent on its maintained antigenicity and/or infectivity, as well as the ability to characterize these qualities within the context of the process, formulation, and clinical performance. In this report we show the utility of flow virometry during preclinical development of a Covid 19 vaccine candidate based on SARS-CoV-2 spike (S) protein expressed on vesicular stomatitis virus (VSV). Using a panel of monoclonal antibodies, we were able to detect the S protein on the surface of the recombinant VSV virus, monitor the expression levels, detect differences in the antigen based on S protein sequence and after virus inactivation, and monitor S protein stability. Collectively, flow virometry provided important data that helped to guide preclinical development of this vaccine candidate.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
2.
Vaccine ; 40(31): 4182-4189, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35688729

RESUMO

The covalent attachment of a bacterial-derived capsular polysaccharide to protein is of critical importance in transforming the polysaccharide from an antigen with limited immunogenicity in infants and older adults to an antigen that can prevent potentially fatal disease. For a polysaccharide-protein conjugate vaccine (PCV) candidate to be successful, it must be sufficiently stable. Chemical breakage of carbohydrate bonds in the polysaccharide may result in the reduction of "conjugate dose" and could negatively impact immunogenicity and the ability of the vaccine to prime for memory responses. Therefore, development of analytical tools to monitor the integrity of a polysaccharide-protein conjugate (glycoconjugate) vaccine is of practical significance. In this work, reducing SDS-PAGE, Intrinsic Protein Fluorescence Spectroscopy (IPFS), Differential Scanning Fluorimetry (DSF) were evaluated methods to study the impact of time, temperature, and formulation composition on the stability of a glycoconjugate vaccine prepared by multisite coupling of polysaccharide to a carrier protein. In addition, an automated capillary Western system was also evaluated to study the impact of storage on glycoconjugate vaccine stability. Two streptococcus pneumoniae polysaccharide-protein conjugates (serotype 3 and serotype 19A) were chosen to examine their physicochemical stability when formulated as a single antigen vaccine. While all methods require only a small amount of test article and can test multiple samples per assay run, automated capillary Western has the additional advantage of being highly sensitive even at low concentrations in complex vaccine formulations that contain aluminum adjuvant and multiple antigens. Results suggest that automated capillary Western is stability-indicating and may be an effective analytical technology tool for the formulation development of a multivalent glycoconjugate vaccine.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Idoso , Anticorpos Antibacterianos , Glicoconjugados , Humanos , Desenvolvimento Industrial , Lactente , Infecções Pneumocócicas/prevenção & controle , Polissacarídeos Bacterianos , Vacinas Conjugadas
3.
Biotechnol J ; 17(10): e2200191, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35771570

RESUMO

During the development of a SARS-CoV-2 vaccine candidate, at the height of the COVID-19 pandemic, raw materials shortages, including chromatography resins, necessitated the determination of a cleaning in place (CIP) strategy for a multimodal core-shell resin both rapidly and efficiently. Here, the deployment of high throughput (HT) techniques to screen CIP conditions for cleaning Capto Core 700 resin exposed to clarified cell culture harvest (CCCH) of a SARS-CoV-2 vaccine candidate produced in Vero adherent cell culture are described. The best performing conditions, comprised of 30% n-propanol and ≥0.75 N NaOH, were deployed in cycling experiments, completed with miniature chromatography columns, to demonstrate their effectiveness. The success of the CIP strategy was ultimately verified at the laboratory scale. Here, its impact was assessed across the entire purification process which also included an ultrafiltration/diafiltration step. It is shown that the implementation of the CIP strategy enabled the re-use of the Capto Core 700 resin for up to 10 cycles without any negative impact on the purified product. Hence, the strategic combination of HT and laboratory-scale experiments can lead rapidly to robust CIP procedures, even for a challenging to clean resin, and thus help to overcome supply shortages.


Assuntos
Vacinas contra COVID-19 , COVID-19 , 1-Propanol , COVID-19/prevenção & controle , Humanos , Pandemias , Regeneração , SARS-CoV-2 , Hidróxido de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA