Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Intervalo de ano de publicação
1.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792575

RESUMO

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Animais , Plasmodium falciparum , Epitopos , Proteínas de Protozoários , Antígenos de Protozoários , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Malária Falciparum/prevenção & controle
2.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792574

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Culicidae/metabolismo , Proteínas de Protozoários , Anticorpos Monoclonais , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA