Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157778

RESUMO

This research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China. The study begins with feature selection via XGBoost in the preprocessing phase, identifying optimal precursor information guided by importance factors. It decomposes the original signal using multivariate variational mode decomposition (MVMD) to address non-stationarity and complexity. H-SKRR is implemented by incorporating significant lagged-time components across sub-components. The aggregated forecasted values from these sub-components generate ILI values for two horizons (i.e., 4-and 7-weekly ahead). Employing the gradient-based optimization (GBO) algorithm fine-tunes model parameters. Furthermore, the deep random vector functional link (dRVFL), Ridge regression, and gated recurrent unit neural network (GRU) models were employed to validate the MVMD-H-SKRR-GBO paradigm's effectiveness. The outcomes, assessed using the MARCOS (Measurement of alternatives and ranking according to compromise solution) method as a multi-criteria decision-making method, highlight the superior accuracy of the MVMD-H-SKRR-GBO model in predicting ILI rates. The results clearly highlight the exceptional performance of the MVMD-H-SKRR-GBO model, with outstanding precision demonstrated by impressive R, RMSE, IA, and U95 % values of 0.946, 0.388, 0.970, and 1.075, respectively, at t + 7.


Assuntos
Influenza Humana , Humanos , Influenza Humana/epidemiologia , Surtos de Doenças , Saúde Pública , Algoritmos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA