Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Nature ; 608(7921): 93-97, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794471

RESUMO

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Assuntos
Anopheles , Ecdisteroides , Malária , Comportamento Sexual Animal , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Anopheles/fisiologia , Ecdisteroides/biossíntese , Ecdisteroides/metabolismo , Feminino , Fertilidade , Humanos , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Mosquitos Vetores/parasitologia , Oviposição , Fosforilação , Plasmodium
2.
Malar J ; 23(1): 153, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762448

RESUMO

BACKGROUND: The attractive targeted sugar bait (ATSB) is a novel malaria vector control tool designed to attract and kill mosquitoes using a sugar-based bait, laced with oral toxicant. Western Province, Zambia, was one of three countries selected for a series of phase III cluster randomized controlled trials of the Westham ATSB Sarabi version 1.2. The trial sites in Kenya, Mali, and Zambia were selected to represent a range of different ecologies and malaria transmission settings across sub-Saharan Africa. This case study describes the key characteristics of the ATSB Zambia trial site to allow for interpretation of the results relative to the Kenya and Mali sites. METHODS: This study site characterization incorporates data from the trial baseline epidemiological and mosquito sugar feeding surveys conducted in 2021, as well as relevant literature on the study area. RESULTS: CHARACTERIZATION OF THE TRIAL SITE: The trial site in Zambia was comprised of 70 trial-designed clusters in Kaoma, Nkeyema, and Luampa districts. Population settlements in the trial site were dispersed across a large geographic area with sparsely populated villages. The overall population density in the 70 study clusters was 65.7 people per square kilometre with a total site population of 122,023 people living in a geographic area that covered 1858 square kilometres. However, the study clusters were distributed over a total area of approximately 11,728 square kilometres. The region was tropical with intense and seasonal malaria transmission. An abundance of trees and other plants in the trial site were potential sources of sugar meals for malaria vectors. Fourteen Anopheles species were endemic in the site and Anopheles funestus was the dominant vector, likely accounting for around 95% of all Plasmodium falciparum malaria infections. Despite high coverage of indoor residual spraying and insecticide-treated nets, the baseline malaria prevalence during the peak malaria transmission season was 50% among people ages six months and older. CONCLUSION: Malaria transmission remains high in Western Province, Zambia, despite coverage with vector control tools. New strategies are needed to address the drivers of malaria transmission in this region and other malaria-endemic areas in sub-Saharan Africa.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Açúcares , Zâmbia , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Humanos , Malária/prevenção & controle , Malária/transmissão , Feminino , Inseticidas/farmacologia
3.
Malar J ; 23(1): 168, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812003

RESUMO

BACKGROUND: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS: This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS: Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS: The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.


Assuntos
Anopheles , Bacillus thuringiensis , Mosquiteiros Tratados com Inseticida , Larva , Malária , Controle de Mosquitos , Côte d'Ivoire/epidemiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Larva/efeitos dos fármacos , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Feminino , Mosquitos Vetores/efeitos dos fármacos , Humanos , Masculino , Adolescente , Pré-Escolar , Adulto Jovem , Criança , Adulto
4.
J Vector Borne Dis ; 61(1): 1-4, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648401

RESUMO

Malaria remains a major health problem in Kenya despite the huge efforts put in place to control it. The non-relenting malaria threat has partly been attributed to residual malaria transmission driven by vectors that cannot effectively be controlled by the two popularly applied control methods: long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Reports indicate that residual transmission is widely spread in areas where malaria is endemic. This could mean that the World Health Organization's vision of a world free of malaria remains a mirage as elimination and prevention of re-establishment of malaria are rendered unachievable. Amongst the major contributors to residual malaria transmission are cryptic rare species, species of mosquitoes that are morphologically indistinguishable, but isolated genetically, that have not been the focus of malaria control programs. Recent studies have reported extensive new Anopheles cryptic species believed to be involved in malaria transmission in Kenya. This underscores the need to understand these malaria vector species, their distribution and bionomics and their impact on malaria transmission. This article discusses reports of these cryptic species, their importance to malaria transmission, especially in the arid and semi-arid areas, and what can be done to mitigate the situation.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Quênia/epidemiologia , Anopheles/classificação , Anopheles/parasitologia , Anopheles/fisiologia , Malária/transmissão , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Mosquitos Vetores/classificação , Controle de Mosquitos/métodos , Humanos , Inseticidas/farmacologia , Mosquiteiros Tratados com Inseticida
5.
Malar J ; 22(1): 340, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940967

RESUMO

BACKGROUND: Malaria vectors vary in feeding preference depending on their innate behaviour, host availability and abundance. Host preference and human biting rate in malaria vectors are key factors in establishing zooprophylaxis and zoopotentiation. This study aimed at assessing the impact of non-human hosts in close proximity to humans on the human biting rate of primary and secondary malaria vectors, with varying host preferences. METHODS: The effect of the presence of non-human hosts in close proximity to the human host on the mean catches per person per night, as a proxy for mosquito biting rate, was measured using mosquito-electrocuting traps (METs), in Sagamaganga, Kilombero Valley, Tanzania. Two experiments were designed: (1) a human versus a calf, each enclosed in a MET, and (2) a human surrounded by three calves versus a human alone, with each human volunteer enclosed individually in a MET spaced 10 m apart. Each experiment was conducted on alternate days and lasted for 36 nights per experiment. During each experiment, the positions of hosts were exchanged daily (except the human in experiment 2). All anopheline mosquitoes caught were assayed for Plasmodium sporozoites using enzyme-linked immunosorbent assay. RESULTS: A total of 20,574 mosquitoes were captured and identified during the study, of which 3608 were anophelines (84.4% primary and 15.6% secondary malaria vectors) and 17,146 were culicines. In experiment 1, the primary malaria vector, Anopheles arabiensis, along with Culex spp. demonstrated a preference for cattle, while the primary vectors, Anopheles funestus, preferred humans. In experiment 2, both primary vectors, An. arabiensis and An. funestus, as well as the secondary vector Anopheles rivolurum, demonstrated behaviours amenable to zooprophylaxis, whereas Culex spp. increased their attraction to humans in the presence of nearby cattle. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS: The findings of this study provide support for the zooprophylaxis model for malaria vectors present in the Kilombero Valley, and for the zoopotentiation model, as it pertains to the Culex spp. in the region. However, the factors regulating zooprophylaxis and zoopotentiation are complex, with different species-dependent mechanisms regulating these behaviours, that need to be considered when designing integrated vector management programmes.


Assuntos
Anopheles , Culex , Mordeduras e Picadas de Insetos , Malária , Humanos , Animais , Bovinos , Anopheles/fisiologia , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Tanzânia , Comportamento Alimentar , Esporozoítos
6.
Malar J ; 22(1): 141, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120518

RESUMO

BACKGROUND: Methods for evaluating efficacy of core malaria interventions in experimental and operational settings are well established but gaps exist for spatial repellents (SR). The objective of this study was to compare three different techniques: (1) collection of blood-fed mosquitoes (feeding), (2) human landing catch (HLC), and (3) CDC light trap (CDC-LT) collections for measuring the indoor protective efficacy (PE) of the volatile pyrethroid SR product Mosquito Shield™ METHODS: The PE of Mosquito Shield™ against a wild population of pyrethroid-resistant Anopheles arabiensis mosquitoes was determined via feeding, HLC, or CDC-LT using four simultaneous 3 by 3 Latin squares (LS) run using 12 experimental huts in Tanzania. On any given night each technique was assigned to two huts with control and two huts with treatment. The LS were run twice over 18 nights to give a sample size of 72 replicates for each technique. Data were analysed by negative binomial regression. RESULTS: The PE of Mosquito Shield™ measured as feeding inhibition was 84% (95% confidence interval (CI) 58-94% [Incidence Rate Ratio (IRR) 0.16 (0.06-0.42), p < 0.001]; landing inhibition 77% [64-86%, (IRR 0.23 (0.14-0.36) p < 0.001]; and reduction in numbers collected by CDC-LT 30% (0-56%) [IRR 0.70 (0.44-1.0) p = 0.160]. Analysis of the agreement of the PE measured by each technique relative to HLC indicated no statistical difference in PE measured by feeding inhibition and landing inhibition [IRR 0.73 (0.25-2.12) p = 0.568], but a significant difference in PE measured by CDC-LT and landing inhibition [IRR 3.13 (1.57-6.26) p = 0.001]. CONCLUSION: HLC gave a similar estimate of PE of Mosquito Shield™ against An. arabiensis mosquitoes when compared to measuring blood-feeding directly, while CDC-LT underestimated PE relative to the other techniques. The results of this study indicate that CDC-LT could not effectively estimate PE of the indoor spatial repellent in this setting. It is critical to first evaluate the use of CDC-LT (and other tools) in local settings prior to their use in entomological studies when evaluating the impact of indoor SR to ensure that they reflect the true PE of the intervention.


Assuntos
Anopheles , Repelentes de Insetos , Malária , Animais , Estados Unidos , Humanos , Anopheles/fisiologia , Tanzânia , Repelentes de Insetos/farmacologia , Malária/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Controle de Mosquitos/métodos , Mosquitos Vetores
7.
Malar J ; 22(1): 319, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865735

RESUMO

BACKGROUND: The Lao PDR National Strategic Plan for malaria control and elimination for year 2021-2025 emphasizes the importance of routine entomological surveillance being conducted in areas with high transmission and in active malaria foci in elimination targeted areas. The collection of entomological surveillance data that is closely linked to recent epidemiological data is crucial for improving impact, as it contributes to the evidence package that supports operational and strategic decision-making of national malaria programmes, as they accelerate their last mile of elimination. METHODS: The Center for Malariology Parasitology and Epidemiology (CMPE) entomology team conducted entomological surveillance activities at 13 sentinel sites in 8 provinces and at active transmission foci sites from 2018 to 2020. The techniques used for the mosquito collection were indoor and outdoor human landing collections (from houses and from cultivation areas) and cattle baited net trap collections. RESULTS: There were 5601 Anopheles mosquito females captured and identified throughout the study, on both human and cow bait. They represented 15 different species or species complexes. The primary malaria vectors as well as the secondary vectors were present in all collection sites in the south, indicating that people living in these rural areas with high malaria incidence are exposed to the vectors. The vectors were highly zoophilic, but they still bite humans throughout the night with a high peak of activity before midnight, both indoors and outdoors. Overall, 17% of the malaria vectors were collected indoors when the people are sleeping. This confirms the importance of bed net use during the night. Thirty-two percent of primary and secondary vectors were collected outdoors at times when people are usually awake and outdoors, which shows that people are exposed to potentially infectious mosquitoes and the importance of personal protection at these times. The findings showed that residual transmission may occur outdoors in the villages, and outside the villages in cultivation fields and forested areas. Epidemiological data showed that transmission was higher in surveillance sites which were targeted as part of a malaria response rather than sentinel sites. CONCLUSIONS: Understanding where and how transmission is persisting, monitoring and mapping vector species distribution in areas with active transmission, monitoring biting trends, and designing evidence based and effective vector control interventions are critical to accelerating progress toward malaria elimination. In this context, the role of entomological surveillance combined with epidemiological data should be considered as a cornerstone in achieving malaria elimination.


Assuntos
Anopheles , Malária , Feminino , Humanos , Animais , Bovinos , Malária/epidemiologia , Malária/prevenção & controle , Anopheles/fisiologia , Laos/epidemiologia , Mosquitos Vetores/fisiologia , Ecologia , Controle de Mosquitos/métodos
8.
Malar J ; 22(1): 8, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609275

RESUMO

BACKGROUND: Cost-effective outdoor-based devices for surveillance and control of outdoor mosquito vector populations can substantially improve their efficacy when baited with synthetic human and animal odours. This study aimed at assessing the dose-dependent efficacy of a previously developed synthetic cattle urine odour to lure malaria vectors, and other mosquito species, to traps placed at different distances from human dwellings outdoors. METHODS: The efficacy of the cattle urine odour lure was assessed through a 5 × 5 Latin square design, using two sets of 5 Suna traps placed at either 1.5 m or 5 m from an adjacent human dwelling, in the rural village of Sagamaganga, Tanzania. Each trap was deployed with one of four doses of the synthetic cattle urine odour blend or a solvent control (heptane). Traps were rotated daily so that each dose and control visited each position twice over a period of 20 experimental nights. The relative attractiveness of each treatment dose and control was compared using a generalized linear mixed model for each species caught. RESULTS: A total of 1568 mosquitoes were caught, of which 783 were anophelines and 785 were culicines. Of the anophelines, 41.6 and 58.3% were primary and secondary vector species, respectively. Unfed and fed females of the primary vector, Anopheles arabiensis, were caught dose-dependently, close to human dwellings (1.5 m), whereas unfed, fed and gravid secondary vector Anopheles pharoensis females were caught dose-dependently, but at a farther distance from the dwellings (5 m). Females of Culex spp. were caught dose-dependently in similar numbers irrespective of the distance from human dwellings. CONCLUSIONS: This study further clarifies the factors to be considered for the implementation of outdoor trapping using the synthetic cattle urine lure to target exophilic and exophagic malaria vectors, for which efficient surveillance and control tools are currently lacking. The findings resulting from this study make significant progress in providing the needed information to overcome the regulatory obstacles to make this tool available for integrated vector management programs, including registration, as well as evaluation and regulation by the World Health Organization.


Assuntos
Anopheles , Malária , Feminino , Humanos , Bovinos , Animais , Anopheles/fisiologia , Odorantes , Mosquitos Vetores/fisiologia , Malária/prevenção & controle , Malária/veterinária , Malária/epidemiologia , Controle de Mosquitos/métodos
9.
Malar J ; 21(1): 294, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271422

RESUMO

BACKGROUND: The housing stock of rural sub-Saharan Africa is changing rapidly. With millions of new homes required over the coming decades, there is an opportunity to protect residents by screening homes from malaria mosquitoes. This study, undertaken in the Upper River Region of The Gambia, explores local perceptions of what a good house should provide for its inhabitants and responses to living in a house that has been modified as part of a randomized control trial designed to assess whether improved housing provided additional protection against clinical malaria in children (the RooPfs trial). METHODS: This descriptive, exploratory study was undertaken over 22 months using mixed-methods (informal conversations, observations, focus group discussions, photovoice, and a questionnaire survey) in a parallel convergent design. Analysis was conducted across the data sets using a framework approach. Following coding, the textual data were charted by a priori and emerging themes. These themes were compared with the quantitative survey results. The nature and range of views about housing and the RooPfs study modifications and the relationships among them were identified and described. RESULTS: The data were derived from a total of 35 sets of observations and informal conversations in 10 villages, 12 discussions with the photovoice photographers, 26 focus group discussions (across 13 villages) and 391 completed questionnaires. The study participants described a 'good house' as one with a corrugate-metal roof, cement walls (preferably cement block, but mud block covered with cement plaster was also an acceptable and cheaper substitute) and well-fitting doors. These features align with local perceptions of a modern house that provides social status and protection from physical harms. The RooPfs modifications were largely appreciated, although poor workmanship caused concerns that houses had become insecure. However, the long-term trusting relationship with the implementing institution and the actions taken to rectify problems provided reassurance and enhanced acceptability. CONCLUSION: In developing housing to address population needs in Africa, attention should be paid to local perceptions of what is required to make a house secure for its inhabitants, as well as providing a healthy environment.


Assuntos
Anopheles , Malária , Criança , Animais , Humanos , Anopheles/fisiologia , Controle de Mosquitos/métodos , Malária/prevenção & controle , Malária/epidemiologia , Habitação , África Subsaariana
10.
J Infect Dis ; 223(12 Suppl 2): S61-S80, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906221

RESUMO

Residual malaria transmission is the actual maintained inoculation of Plasmodium, in spite of a well-designed and implemented vector control programs, and is of great concern for malaria elimination. Residual malaria transmission occurs under several possible circumstances, among which the presence of exophilic vector species, such as Anopheles dirus, or indoor- and outdoor-biting vectors, such as Anopheles nili, or specific behavior, such as feeding on humans indoors, then resting or leaving the house the same night (such as Anopheles moucheti) or also changes in behavior induced by insecticides applied inside houses, such as the well-known deterrent effect of permethrin-treated nets or the irritant effect of DDT. The use of insecticides may change the composition of local Anopheles populations, such as A. arabiensis taking up the place of A. gambiae in Senegal, A. aquasalis replacing A. darlingi in Guyana, or A. harrisoni superseding A. minimus in Vietnam. The change in behavior, such as biting activity earlier than usually reported-for example, Anopheles funestus after a large-scale distribution of long-lasting insecticidal nets-or insecticide resistance, in particular the current spread of pyrethroid resistance, could hamper the efficacy of classic pyrethroid-treated long-lasting insecticidal nets and maintained transmission. These issues must be well documented in every situation to elaborate, implement, monitor, and evaluate tailored vector control programs, keeping in mind that they must be conceived as integrated programs with several well and appropriately coordinated approaches, combining entomological but also parasitological, clinical, and social methods and analyses. A successful integrated vector control program must then be designed to reduce transmission and incidence rates of malaria morbidity and overall mortality.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Anopheles/efeitos dos fármacos , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Malária/transmissão , Mosquitos Vetores , Piretrinas/uso terapêutico
11.
Malar J ; 20(1): 134, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676493

RESUMO

BACKGROUND: Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken. METHODS: A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. RESULTS: Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. CONCLUSIONS: Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.


Assuntos
Animais Geneticamente Modificados/psicologia , Anopheles/fisiologia , Controle de Doenças Transmissíveis/organização & administração , Conhecimentos, Atitudes e Prática em Saúde , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção , Tanzânia , Adulto Jovem
12.
Malar J ; 19(1): 172, 2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32362282

RESUMO

BACKGROUND: This study evaluated the effectiveness of improved housing on indoor residual mosquito density and exposure to infected Anophelines in Minkoameyos, a rural community in southern forested Cameroon. METHODS: Following the identification of housing factors affecting malaria prevalence in 2013, 218 houses were improved by screening the doors and windows, installing plywood ceilings on open eaves and closing holes on walls and doors. Monthly entomological surveys were conducted in a sample of 21 improved and 21 non-improved houses from November 2014 to October 2015. Mosquitoes sampled from night collections on human volunteers were identified morphologically and their parity status determined. Mosquito infectivity was verified through Plasmodium falciparum CSP ELISA and the average entomological inoculation rates determined. A Reduction Factor (RF), defined as the ratio of the values for mosquitoes collected outdoor to those collected indoor was calculated in improved houses (RFI) and non-improved houses (RFN). An Intervention Effect (IE = RFI/RFN) measured the true effect of the intervention. Chi square test was used to determine variable significance. The threshold for statistical significance was set at P < 0.05. RESULTS: A total of 1113 mosquitoes were collected comprising Anopheles sp (58.6%), Culex sp (36.4%), Aedes sp (2.5%), Mansonia sp (2.4%) and Coquillettidia sp (0.2%). Amongst the Anophelines were Anopheles gambiae sensu lato (s.l.) (95.2%), Anopheles funestus (2.9%), Anopheles ziemanni (0.2%), Anopheles brohieri (1.2%) and Anopheles paludis (0.5%). Anopheles gambiae sensu stricto (s.s.) was the only An. gambiae sibling species found. The intervention reduced the indoor Anopheles density by 1.8-fold (RFI = 3.99; RFN = 2.21; P = 0.001). The indoor density of parous Anopheles was reduced by 1.7-fold (RFI = 3.99; RFN = 2.21; P = 0.04) and that of infected Anopheles by 1.8-fold (RFI = 3.26; RFN = 1.78; P = 0.04). Indoor peak biting rates were observed between 02 a.m. to 04 a.m. in non-improved houses and from 02 a.m. to 06 a.m. in improved houses. CONCLUSION: Housing improvement contributed to reducing indoor residual anopheline density and malaria transmission. This highlights the need for policy specialists to further evaluate and promote aspects of house design as a complementary control tool that could reduce indoor human-vector contact and malaria transmission in similar epidemiological settings.


Assuntos
Anopheles/fisiologia , Controle de Doenças Transmissíveis/métodos , Habitação/estatística & dados numéricos , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Camarões , Humanos , Malária/prevenção & controle , Densidade Demográfica , População Rural
13.
Malar J ; 19(1): 116, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188468

RESUMO

BACKGROUND: Between 1999 and 2008 Russia experienced a flare-up of transmission of vivax malaria following its massive importation with more than 500 autochthonous cases in European Russia, the Moscow region being the most affected. The outbreak waned soon after a decrease in importation in mid-2000s and strengthening the control measures. Compared with other post-eradication epidemics in Europe this one was unprecedented by its extension and duration. METHODS: The aim of this study is to identify geographical determinants of transmission. The degree of favourability of climate for vivax malaria was assessed by measuring the sum of effective temperatures and duration of season of effective infectivity using data from 22 weather stations. For geospatial analysis, the locations of each of 405 autochthonous cases detected in Moscow region have been ascertained. A MaxEnt method was used for modelling the territorial differentiation of Moscow region according to the suitability of infection re-emergence based on the statistically valid relationships between the distribution of autochthonous cases and environmental and climatic factors. RESULTS: In 1999-2004, in the beginning of the outbreak, meteorological conditions were extremely favourable for malaria in 1999, 2001 and 2002, especially within the borders of the city of Moscow and its immediate surroundings. The greatest number of cases occurred at the northwestern periphery of the city and in the adjoining rural areas. A significant role was played by rural construction activities attracting migrant labour, vegetation density and landscape division. A cut-off altitude of 200 m was observed, though the factor of altitude did not play a significant role at lower altitudes. Most likely, the urban heat island additionally amplified malaria re-introduction. CONCLUSION: The malariogenic potential in relation to vivax malaria was high in Moscow region, albeit heterogeneous. It is in Moscow that the most favourable conditions exist for vivax malaria re-introduction in the case of a renewed importation. This recent event of large-scale re-introduction of vivax malaria in a temperate area can serve as a case study for further research.


Assuntos
Clima , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Cidades/epidemiologia , Surtos de Doenças/prevenção & controle , Geografia , Humanos , Moscou/epidemiologia , Plasmodium vivax , População Rural , Estações do Ano
14.
Malar J ; 19(1): 52, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000782

RESUMO

BACKGROUND: Zooprophylaxis is a technique in which blood-seeking vectors are diverted to non-host animals in order to lower blood-feeding rates on human hosts. The success of this technique depends on the host preference of the vector being targeted. The objective of this study was to evaluate the effect of L-lactic acid (Abate) to divert malaria mosquito, Anopheles gambiae from feeding on human host. METHODS: A 14-month-old female goat was treated with Abate, a formulation incorporating L-lactic acid into a slow-release matrix. This formulation was applied on the fur of the goat's back and neck. The treated animal was then presented to Anopheles gambiae sensu stricto (s.s.) as a prospective host in a semi-field environment ('mosquito sphere') together with either an untreated animal or a human. The number of mosquitoes caught to each host choice offered were compared. RESULTS: Goat treated with the L-lactic acid formulation successfully attracted An. gambiae at higher rates (70.2%) than the untreated ones (29.8%). Furthermore, An. gambiae s.s. were attracted to a treated goat at an equivalent degree (47.3%) as to their preferred human host (52.7%), even when the preferred host was present in the same environment. CONCLUSIONS: The findings indicate that human host-seeking mosquitoes can be diverted into feeding on non-preferred hosts despite the close proximity of their favoured host, hence reducing chances for the transmission of blood-borne parasites.


Assuntos
Anopheles/fisiologia , Inseticidas , Ácido Láctico , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Temefós , Animais , Comportamento Alimentar/efeitos dos fármacos , Feminino , Cabras , Humanos , Malária/transmissão , Coelhos
15.
Malar J ; 19(1): 22, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941508

RESUMO

BACKGROUND: Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis, inside four common house types in rural south-eastern Tanzania. METHODS: The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6 a.m.-8 a.m.), evenings (6 p.m.-8 p.m.) and at night (11 p.m.-12.00 a.m.) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets). RESULTS: Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus; 60-66% of An. arabiensis). CONCLUSION: While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


Assuntos
Anopheles/fisiologia , Habitação/classificação , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , População Rural , Animais , Anopheles/classificação , Anopheles/parasitologia , Feminino , Humanos , Mosquiteiros Tratados com Inseticida/classificação , Malária/transmissão , Controle de Mosquitos/métodos , Controle de Mosquitos/normas , Mosquitos Vetores/parasitologia , Proteínas de Protozoários/isolamento & purificação , Glândulas Salivares/química , Glândulas Salivares/parasitologia , Tanzânia , Fatores de Tempo
16.
Bull Entomol Res ; 110(3): 379-387, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31813382

RESUMO

Entomological indicators such as vector density, distribution, biology and bionomics and their vectorial attributes are important parameters for measuring the pattern and intensity of malaria transmission. Although published articles provide evidence for the existence of associations between entomological indices and malaria transmission dynamics, none of them is able to establish a strong correlation. In order to address this issue, the present study aims to assess how malaria transmission is influenced and can be predicted by local major vector dynamics. We carried out an entomological assessment of major Anopheline vector abundance, habit/habitat, resting and feeding behavior, infectivity rates, and other entomological parameters. Results suggest that malaria transmission was correlated with a vector control intervention and non-intervention scenario in a high endemic region of Kalahandi district of Odisha, India. Amongst all indices, infective anthropophagic vectors established a strong positive correlation with malaria morbidity in comparison to infective or anthropophagic vector species during both the study periods. Though other entomological parameters influenced the transmission intensity, little quantifiable association was detected among study sites. This study provides strong baseline evidence of an association between entomological indices and malaria transmission dynamics, which could be used as an early warning system for outbreak prediction.


Assuntos
Anopheles/fisiologia , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores , Animais , Anopheles/parasitologia , Ecossistema , Comportamento Alimentar , Humanos , Índia/epidemiologia , Malária/prevenção & controle , Plasmodium , Estações do Ano
17.
ScientificWorldJournal ; 2020: 4801068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694955

RESUMO

Odor-baited devices are increasingly needed to compliment long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for control of residual malaria transmission. However, the odor-baited devices developed so far are bulky, dependent on the source of electricity and carbon dioxide (CO2), and they are logistically unsuitable for scaling up in surveillance and control of malaria vectors. We designed a passive and portable outdoor host seeking device (POHD) and preliminarily evaluated suitable components against Anopheles arabiensis that maintains residual malaria transmission. Experiments were conducted using semifield reared An. arabiensis within the semifield system at Ifakara Health Institute (IHI) in southeastern Tanzania. These mosquitoes were exposed to Suna traps® baited with BG lures or source of light and augmented with carbon dioxide (CO2) in view of identifying best attractants necessary to improve attractiveness of designed POHD. Two Suna traps® were hanged at the corner but outside the experimental hut in a diagonal line and rotated between four corners to control for the effect of position and wind direction on mosquito catches. Furthermore, mosquitoes were also exposed to either a bendiocarb-treated or bendiocarb-untreated POHD baited with Mbita blend, Ifakara blend, and worn socks and augmented with warmth (i.e., 1.5 liter bottle of warm water) inside an experimental hut or a screened rectangular box. This study demonstrated that mosquitoes were more strongly attracted to Suna trap® baited with BG lures and CO2 relative to those traps baited with a source of light and CO2. The POHD baited with synthetic blends attracted and killed greater proportion of An. arabiensis compared with POHD baited with worn socks. Efficacy of the POHD was unaffected by source of warmth, and it was reduced by about 50% when the device was tested inside a screened rectangular box relative to closed experimental hut. Overall, this study demonstrates that the POHD baited with synthetic blends (Mbita and Ifakara blends) and bendiocarb can effectively attract and kill outdoor biting malaria vector species. Such POHD baited with synthetic blends may require the source of CO2 to enhance attractiveness to mosquitoes. Further trials are, therefore, ongoing to evaluate attractiveness of improved design of POHD baited with slow-release formulation of synthetic blends and sustainable source of CO2 to malaria vectors under semifield and natural environments.


Assuntos
Anopheles/metabolismo , Mordeduras e Picadas de Insetos/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/metabolismo , Feromônios/metabolismo , Animais , Anopheles/fisiologia , Dióxido de Carbono/metabolismo , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Malária/parasitologia , Controle de Mosquitos/instrumentação , Mosquitos Vetores/fisiologia , Tanzânia
18.
Malar J ; 18(1): 301, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477112

RESUMO

BACKGROUND: Malaria is a huge global health burden due to its mortality, morbidity and cost to economies. It is necessary to eliminate the disease in all countries where possible to achieve the World Health Organization target of > 90% reduction by 2030. Successful previous campaigns suggest elimination is feasible in Peru. However, the incidence has recently been rising, focalized to the region of Loreto. Currently, the distribution of long-lasting insecticide-treated nets (LLINs) is a major part of Peru's malaria control strategy, however these may be having a limited effect in Loreto, because of the recent behavioural adaption of the mosquito vector, Anopheles darlingi, to earlier biting times, as well as local perceptions and practices towards LLINs. It was, therefore, necessary to investigate how perceptions, practices and lifestyle factors affect the efficacy of LLINs in Loreto. METHODS: Qualitative research was carried out in 5 rural communities along the Iquitos-Nauta Road in Loreto, which have increased exposure and have received nets in a distribution scheme prior to the study. Twenty semi-structured interviews as well as observations of the bed nets were conducted in participants' homes, using a topic guide. Thematic content analysis was used to produce the findings. RESULTS: All participants viewed malaria prevention as a high priority, and the use of bed nets was deeply embedded in the culture. They expressed preference for LLINs over traditional-type nets. However there were too few LLINs distributed, participants did not maintain the nets correctly, washed them too frequently and did not repair holes. The earlier mosquito biting times were also problematic. Additionally, poor housing construction and proximity to mosquito breeding sites further increased transmission. CONCLUSION: The positive findings in attitudes of the respondents can be used to improve malaria control in these communities. Interventions providing education on effective LLIN use should be implemented. A change in strategy away from vector control methods is also necessary, as these do not provide long-term protection due to the adaptability of An. darlingi. Interventions focusing on parasite control are recommended, and socio-economic factors which increase malaria risk should be addressed.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Adolescente , Adulto , Idoso , Animais , Anopheles/fisiologia , Comportamento Animal , Feminino , Habitação , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Resistência a Inseticidas , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/fisiologia , Peru , Pesquisa Qualitativa , População Rural , Adulto Jovem
19.
Malar J ; 17(1): 85, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463259

RESUMO

BACKGROUND: Malaria has historically been entrenched in indigenous populations of the República de Panamá. This scenario occurs despite the fact that successful methods for malaria elimination were developed during the creation of the Panamá Canal. Today, most malaria cases in the República de Panamá affect the Gunas, an indigenous group, which mainly live in autonomous regions of eastern Panamá. Over recent decades several malaria outbreaks have affected the Gunas, and one hypothesis is that such outbreaks could have been exacerbated by climate change, especially by anomalous weather patterns driven by the EL Niño Southern Oscillation (ENSO). RESULTS: Monthly malaria cases in Guna Yala (1998-2016) were autocorrelated up to 2 months of lag, likely reflecting parasite transmission cycles between humans and mosquitoes, and cyclically for periods of 4 months that might reflect relapses of Plasmodium vivax, the dominant malaria parasite transmitted in Panamá. Moreover, malaria case number was positively associated (P < 0.05) with rainfall (7 months of lag), and negatively with the El Niño 4 index (15 months of lag) and the Normalized Difference Vegetation Index, NDVI (8 months of lag), the sign and magnitude of these associations likely related to the impacts of weather patterns and vegetation on the ecology of Anopheles albimanus, the main malaria vector in Guna Yala. Interannual cycles, of approximately 4-year periods, in monthly malaria case numbers were associated with the El Niño 4 index, a climatic index associated with weather and vegetation dynamics in Guna Yala at seasonal and interannual time scales. CONCLUSION: The results showed that ENSO, rainfall and NDVI were associated with the number of malaria cases in Guna Yala during the study period. These results highlight the vulnerability of Guna populations to malaria, an infection sensitive to climate change, and call for further studies about weather impacts on malaria vector ecology, as well as the association of malaria vectors with Gunas paying attention to their socio-economic conditions of poverty and cultural differences as an ethnic minority.


Assuntos
Anopheles/fisiologia , Mudança Climática , El Niño Oscilação Sul , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Humanos , Malária/prevenção & controle , Panamá
20.
Malar J ; 17(1): 31, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338719

RESUMO

BACKGROUND: In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. METHODS: Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. RESULTS: Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. CONCLUSION: To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts with the population's social behaviours and current use of preventive measures. Attitudes concerning personal responsibility for malaria prevention and long-standing misconceptions as to the cause of malaria and best preventive practices also need to be addressed.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Percepção , Prevenção Primária/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anopheles/fisiologia , Feminino , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Malária/prevenção & controle , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/fisiologia , Peru/epidemiologia , Pesquisa Qualitativa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA