Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 609(7926): 299-306, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071193

RESUMO

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2-5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6-8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social-ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.


Assuntos
Agricultura , Produtos Agrícolas , Segurança Alimentar , Aquecimento Global , Agricultura/métodos , Agricultura/tendências , Atmosfera/química , Dióxido de Carbono/análise , Sequestro de Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Retroalimentação , Segurança Alimentar/métodos , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Objetivos , Humanos , Nitrogênio/análise , Estações do Ano , Temperatura , Fatores de Tempo
2.
Nature ; 578(7795): 409-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076219

RESUMO

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10.


Assuntos
Atmosfera/química , Combustíveis Fósseis/história , Combustíveis Fósseis/provisão & distribuição , Atividades Humanas/história , Metano/análise , Metano/história , Biomassa , Radioisótopos de Carbono , Carvão Mineral/história , Carvão Mineral/provisão & distribuição , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Camada de Gelo/química , Metano/química , Gás Natural/história , Gás Natural/provisão & distribuição , Petróleo/história , Petróleo/provisão & distribuição
3.
Nature ; 572(7769): 373-377, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31261374

RESUMO

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.


Assuntos
Dióxido de Carbono/análise , Eletricidade , Combustíveis Fósseis/provisão & distribuição , Aquecimento Global/prevenção & controle , Objetivos , Cooperação Internacional/legislação & jurisprudência , Temperatura , Atmosfera/química , Combustíveis Fósseis/economia , Aquecimento Global/economia , Gás Natural/provisão & distribuição
4.
Proc Natl Acad Sci U S A ; 117(32): 18984-18990, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723816

RESUMO

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: -2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx chemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing "business as usual" air pollutant emissions from economic activities. Explore trends here: https://nina.earthengine.app/view/lockdown-pollution.


Assuntos
Poluição do Ar/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Quarentena/estatística & dados numéricos , Poluentes Atmosféricos/análise , Atmosfera/química , COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Dióxido de Nitrogênio/análise , Ozônio/análise , Pandemias/prevenção & controle , Material Particulado/análise , Pneumonia Viral/prevenção & controle , Quarentena/economia , Emissões de Veículos/análise
5.
Nature ; 531(7593): 225-8, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961656

RESUMO

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Ecossistema , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Metano/metabolismo , Óxido Nitroso/metabolismo , Agricultura/estatística & dados numéricos , Ásia , Dióxido de Carbono/análise , Aquecimento Global/prevenção & controle , Efeito Estufa/prevenção & controle , Atividades Humanas/estatística & dados numéricos , Metano/análise , Óxido Nitroso/análise
6.
Nature ; 532(7600): 489-91, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27064904

RESUMO

Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.


Assuntos
Atmosfera/química , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Nitrogênio/análise , Nitrogênio/química , Água do Mar/química , Aerossóis/química , Oceano Atlântico , Nitratos/análise , Nitratos/química , Ácido Nítrico/química , Ácido Nitroso/análise , Ácido Nitroso/química , North Carolina , Oxidantes/química , Fotólise , South Carolina
9.
Nature ; 506(7486): 81-4, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24429521

RESUMO

The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.


Assuntos
Atmosfera/química , Camada de Gelo/química , Mercúrio/análise , Ozônio/análise , Alaska , Regiões Árticas , Ecossistema , Neve
12.
Bull Environ Contam Toxicol ; 105(1): 2-8, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32535674

RESUMO

As COVID-19 spread all over the world, most of the countries adopted some kind of restrictions to avoid the collapse of health systems. In Brazil, São Paulo and Rio the Janeiro, the two most populated cities in the country, were the first to determine social distancing. In this study, the impact of the social distancing measures on the concentrations of the three main primary air pollutants (PM10, NO2 and CO) was analyzed. CO levels showed the most significant reductions (up to 100%) since it is related to light-duty vehicular emissions. NO2 also showed reductions (9.1%-41.8%) while PM10 levels were only reduced in the 1st lockdown week. The decrease of pollutants was not directly proportional to the vehicular flux reduction, because it depends on other factors such as the transport of air masses from industrial and rural areas. The differences observed can be explained considering the fleet characteristics in the two cities and the response of the population to the social distancing recommendations.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Controle de Doenças Transmissíveis/estatística & dados numéricos , Surtos de Doenças/legislação & jurisprudência , Monitoramento Ambiental , Pandemias/estatística & dados numéricos , Betacoronavirus , Brasil , COVID-19 , Cidades , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Pandemias/prevenção & controle , Material Particulado/análise , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Emissões de Veículos/análise
18.
Faraday Discuss ; 200: 251-270, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574563

RESUMO

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.


Assuntos
Poluentes Atmosféricos/metabolismo , Atmosfera/química , Minerais/metabolismo , Saúde Pública , Espécies Reativas de Oxigênio/metabolismo , Aerossóis/química , Aerossóis/metabolismo , Poluentes Atmosféricos/química , Minerais/química , Material Particulado/química , Material Particulado/metabolismo , Água/química , Água/metabolismo
19.
Nature ; 476(7358): 43-50, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814274

RESUMO

Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.


Assuntos
Atmosfera/química , Gases/análise , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA