Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Phytopathology ; 114(2): 464-473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37565813

RESUMO

Frequent fungicide applications are required to manage grapevine powdery mildew (Erysiphe necator). However, this practice is costly and has led to widespread fungicide resistance. A method of monitoring in-field fungicide efficacy could help growers maximize spray-interval length, thereby reducing costs and the rate of fungicide resistance emergence. The goal of this study was to evaluate if hyperspectral sensing in the visible to shortwave infrared range (400 to 2,400 nm) can quantify foliar fungicide efficacy on grape leaves. Commercial formulations of metrafenone, Bacillus mycoides isolate J (BmJ), and sulfur were applied on Chardonnay grapevines in vineyard or greenhouse settings. Foliar reflectance was measured with handheld hyperspectral spectroradiometers at multiple days post-application. Fungicide efficacy was estimated as a proxy for fungicide residue and disease control measured with the Blackbird microscopy imaging robot. Treatments could be differentiated from the untreated control with an accuracy of 73.06% for metrafenone, 67.76% for BmJ, and 94.10% for sulfur. The change in spectral reflectance was moderately correlated with the cube root of the area under the disease progress curve for metrafenone- and sulfur-treated samples (R2 = 0.38 and 0.36, respectively) and with sulfur residue (R2 = 0.42). BmJ treatment impacted foliar physiology by enhancing the leaf mass/area and reducing the nitrogen and total phenolic content as estimated from spectral reflectance. The results suggest that hyperspectral sensing can be used to monitor in-situ fungicide efficacy, and the prediction accuracy depends on the fungicide and the time point measured. The ability to monitor in-situ fungicide efficacy could facilitate more strategic fungicide applications and promote sustainable grapevine protection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bacillus , Benzofenonas , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Enxofre
2.
World J Microbiol Biotechnol ; 40(4): 110, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411743

RESUMO

The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.


Assuntos
Bacillus , Agentes de Controle Biológico , Doenças das Plantas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Controle Biológico de Vetores/métodos , Agricultura/métodos , Microbiologia do Solo , Frutas/microbiologia
3.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722150

RESUMO

AIMS: This study aimed to improve the screening strategy for the selection of biocontrol agents with high biocontrol efficacy against fire blight disease. METHODS AND RESULTS: A two-step screening procedure consisting of in-vitro laboratory tests and an ex-vivo test system using detached pear leaves was applied to 43 Bacillus strains originated from the rhizosphere and the aerial parts of apple and pear plants. The grouping of the studied strains and the tested traits based on the principal component analysis and the two-way hierarchical cluster analysis showed that siderophore production and biofilm formation are the most desirable traits in a Bacillus biocontrol agent to control fire blight disease and that rhizospheric originating strains are the most effective. CONCLUSIONS: In contrast to the previous screening strategies that are often insufficient to select the most suitable microorganisms, this study reported an improved strategy based on the microbial competition traits to select potential Bacillus biocontrol agents with high biocontrol efficacy against fire blight disease.


Assuntos
Bacillus , Malus , Pyrus , Doenças das Plantas/prevenção & controle
4.
Food Microbiol ; 109: 104125, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309454

RESUMO

Foodborne pathogenic bacteria in multi-species biofilms in food manufacturing facilities have been suspected to be the cause of cross-contamination leading to foodborne illness. We studied if cafeteria kitchen-associated bacterial isolates can have any protective effect on E. coli O157:H7 in biofilm against extracellular polymeric substances (EPS)-degrading enzymes and sodium hypochlorite. We investigated multi-species biofilm-forming ability and the efficacy of EPS-degrading enzymes using crystal violet assay. The susceptibility of E. coli O157:H7 to sodium hypochlorite (NaClO) was evaluated using propidium monoazide combined with quantitative PCR (PMA-qPCR). Then, a combined treatment with enzymes followed by NaClO was also tested. Most cafeteria kitchen isolates of Acinetobacter and Bacillus were able to form biofilms. Several of them showed a protective effect on E. coli O157:H7 against NaClO after forming multi-species biofilms, particularly in Acinetobacter. This protective effect on E. coli O157:H7 was also noticed after the enzyme or the combined treatment with NaClO. Our results give us an insight into the protective role of food-associated environmental bacteria for E. coli O157:H7 in biofilms against common sanitizers and warrant further study to develop effective control methods. Our study also highlights the importance of preventing contamination or biofilm formation by environmental microorganisms, eventually reducing foodborne illness.


Assuntos
Acinetobacter , Bacillus , Escherichia coli O157 , Doenças Transmitidas por Alimentos , Humanos , Hipoclorito de Sódio/farmacologia , Microbiologia de Alimentos , Biofilmes , Doenças Transmitidas por Alimentos/prevenção & controle , Matriz Extracelular
5.
J Appl Microbiol ; 132(3): 1914-1925, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34716980

RESUMO

AIMS: Copper ion is widespread in wastewater and threatens the condition and human health. Micro-organisms have unique advantages to remove heavy-metal ions from water, but are rarely reported in the removal of copper ion. This aims to develop micro-organisms that can remove copper ion in water, characterize their properties and analyse their potential application in practice. METHODS AND RESULTS: Sewage sludge was used as the source to isolate wild bacteria that can remove copper ion in water. The most efficient strain was screened out from 23 obtained isolates, identified as Bacillus pseudomycoides and coded as C6. The properties of C6 in the removal of copper ion in water were investigated in the aspects of reaction conditions, reaction groups, reaction dynamic and the application in oat planting. The reaction at pH 7 within 10 min yielded the highest removal rate of copper ion, 83%. The presence of lead ion in the reaction system could promote the removal rate of copper ion. Carboxyl groups and amidogen of C6 biomass were mainly involved in the removal of copper ion. The removal of copper ion was in accord with single-layer adsorption and Langmuir adsorption isotherm model. In application, C6 biomass reduced the copper content in the oat seedlings grown in copper ion containing water by more than seven times. CONCLUSIONS: B. pseudomycoides C6 can efficiently remove copper ion in water and inhibit it from entering plants. SIGNIFICANCE AND IMPACT OF STUDY: This is the first time to report the capability of B. pseudomycoides to remove copper ion in water, which is also more efficient than the currently reported chemical and biological methods.


Assuntos
Bacillus , Poluentes Químicos da Água , Adsorção , Cobre/análise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Solo , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise
7.
Biodegradation ; 33(5): 477-487, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788449

RESUMO

Polylactic acid (PLA), a biodegradable plastic, is used to substitute commercial plastics in various fields such as disposable packaging materials and mulching films. Although the biodegradation of PLA under submerged or composting conditions is accelerated, increasing the biodegradability of PLA under soil burial conditions is still a challenge. This study reviews and compares the PLA biodegradation ability of Bacillus amyloliquefaciens and Brevibacillus brevis, both PLA-degrading bacteria. The biodegradation ability of a single bacteria in non-composting conditions was evaluated. In addition, in terms of biostimulation, PLA biodegradation according to nitrogen sources was compared. As a result, a higher PLA biodegradation ability was found in B. brevis than in B. amyloliquefaciens. Moreover, it was confirmed that the biodegradation of the PLA film was increased by using soytone as a nitrogen source in both bacteria. Controlling the nitrogen source could be a new way to increase the biodegradation of PLA.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Bacillus/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Brevibacillus , Nitrogênio , Poliésteres/metabolismo
8.
J Infect Dis ; 223(8): 1445-1455, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32813017

RESUMO

BACKGROUND: The human liver fluke Opisthorchis viverrini is a food-borne trematode that causes hepatobiliary disease in humans throughout Southeast Asia. People become infected by consuming raw or undercooked fish containing metacercariae. Development of a vaccine to prevent or minimize pathology would decrease the risk of severe morbidity, including the development of bile duct cancer. METHODS: We produced an oral vaccine based on recombinant Bacillus subtilis spores expressing the large extracellular loop (LEL) of O. viverrini tetraspanin-2 (Ov-TSP-2), a protein that is abundant on the surface of O. viverrini secreted extracellular vesicles (EVs). Recombinant spores expressing Ov-TSP-2-LEL were orally administered to hamsters prior to challenge infection with O. viverrini metacercariae. RESULTS: Vaccinated hamsters generated serum IgG as well as bile IgG and IgA responses to Ov-TSP-2-LEL, and serum IgG from vaccinated hamsters blocked the uptake of fluke EVs by a human bile duct epithelial cell line. Vaccinated hamsters had 56% reductions in both adult flukes and fecal eggs compared to the control group. CONCLUSIONS: These findings indicate that oral vaccination of hamsters with recombinant B. subtilis spores expressing Ov-TSP-2-LEL is efficacious at reducing infection intensity and could form the basis of a vaccine for control of carcinogenic liver fluke infection in humans.


Assuntos
Bacillus , Vesículas Extracelulares , Opistorquíase , Tetraspaninas/administração & dosagem , Vacinas/administração & dosagem , Administração Oral , Animais , Anticorpos Anti-Helmínticos/sangue , Carcinogênese , Carcinógenos , Linhagem Celular , Cricetinae , Humanos , Imunoglobulina G/sangue , Opistorquíase/prevenção & controle , Opistorquíase/terapia , Opisthorchis , Esporos Bacterianos
9.
BMC Biotechnol ; 21(1): 31, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926450

RESUMO

BACKGROUND: Microorganisms, including Bacillus species are used to help control plant pathogens, thereby reducing reliance on synthetic pesticides in agriculture. Bacillus velezensis strain 1B-23 has been shown to reduce symptoms of bacterial disease caused by Clavibacter michiganensis subsp. michiganensis in greenhouse-grown tomatoes, with in vitro studies implicating the lipopeptide surfactin as a key antimicrobial. While surfactin is known to be effective against many bacterial pathogens, it is inhibitory to a smaller proportion of fungi which nonetheless cause the majority of crop diseases. In addition, knowledge of optimal conditions for surfactin production in B. velezensis is lacking. RESULTS: Here, B. velezensis 1B-23 was shown to inhibit in vitro growth of 10 fungal strains including Candida albicans, Cochliobolus carbonum, Cryptococcus neoformans, Cylindrocarpon destructans Fusarium oxysporum, Fusarium solani, Monilinia fructicola, and Rhizoctonia solani, as well as two strains of C. michiganensis michiganensis. Three of the fungal strains (C. carbonum, C. neoformans, and M. fructicola) and the bacterial strains were also inhibited by purified surfactin (surfactin C, or [Leu7] surfactin C15) from B. velezensis 1B-23. Optimal surfactin production occurred in vitro at a relatively low temperature (16 °C) and a slightly acidic pH of 6.0. In addition to surfactin, B. velenzensis also produced macrolactins, cyclic dipeptides and minor amounts of iturins which could be responsible for the bioactivity against fungal strains which were not inhibited by purified surfactin C. CONCLUSIONS: Our study indicates that B. velezensis 1B-23 has potential as a biocontrol agent against both bacterial and fungal pathogens, and may be particularly useful in slightly acidic soils of cooler climates.


Assuntos
Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Fungos/efeitos dos fármacos , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Bacillus/química , Agentes de Controle Biológico/metabolismo , Canadá , Fungos/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Doenças das Plantas/prevenção & controle , Temperatura
10.
Ecotoxicol Environ Saf ; 208: 111484, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120265

RESUMO

Industrial wastes, for instance, tannery wastes are rich soups of resistant and bioremediation-potent bacteria. In the present work, Chromium (Cr) and tannic acid (TA) resistance bacterial strains were isolated from tannery effluent and identified as Bacillus subtilis (MCC 3275) and Bacillus safensis (MCC 3283) based on its 16S Ribosomal RNA homology. Hexavalent Cr is highly toxic and mutagenic due to its high mobility and reactivity. Whereas, TA is known to inhibit enzyme activity, substrate deprivation, and interaction with membranes and matrix-metal ions. The developed In vitro co-cultured microcosm of B. subtilis and B. safensis was able to remove Cr(VI) up to 95% and TA up to 23%. The bacteria cultures separately were able to degrade Cr(VI) to 88% by B. subtilis and 91% by B. safensis and TA up to 27%. Plackett Burman design (PBD) followed by Response surface methodology (RSM) was applied for the optimization of physio-chemical parameters. The optimized conditions for co-culture development were recorded as K2HPO4 = 0.2 g/L, MgSO4 = 0.2 g/L, NH4Cl = 0.5 g/L, glucose - 0.2 g/L, TA - 5%, Cr = 200 ppm, incubation period of 96 h, agitation speed of 110 rpm, pH = 5.0, temperature= 30 °C and inoculum size = 3%. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) revealed the thorough mechanism of cellular uptake followed by degradation of Cr(VI) and TA. The efficiency of co-culture for other heavy metals was observed as follows: Zn 65%, Pb 63%, Cd 65%, and Ni 65%. Bioremediation using bacteria is an economical and environmentally better alternative to conventional remediation methods. The isolated bacteria are useful in the effluent treatment of tannery or related industries and in metal recovery in mining processes.


Assuntos
Bacillus subtilis/metabolismo , Bacillus/metabolismo , Cromo/metabolismo , Taninos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Biodegradação Ambiental , Resíduos Industriais/análise
11.
J Appl Microbiol ; 128(4): 920-933, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31758752

RESUMO

AIMS: In case of biological hazards and pandemics, personal protective equipment of rescue forces is currently manually decontaminated with harmful disinfectants, primarily peracetic acid. To overcome current drawbacks regarding supply, handling and disposal of chemicals, the use of plasma processed air (PPA) represents a promising alternative for surface decontamination on site. In this study, the sporicidal efficiency of a portable plasma system, designed for field applications, was evaluated. METHODS AND RESULTS: The developed plasma device is based on a dielectric barrier discharge (DBD) and operated with ambient air as process gas. PPA from the plasma nozzle was flushed into a treatment chamber (volume: 300 l) and bacterial endospores (Bacillus subtilis and Bacillus atrophaeus) dried on different surfaces were treated under variable conditions. Reductions in spores by more than 4 log10 were found within 3 min of PPA exposure. However, the presence of endospores in agglomerates or in an organic matrix as well as the complexity of the respective surface microstructure negatively affected the inactivation efficiency. When endospores were embedded in a dried protein matrix, mechanical wiping with swabs during exposure to PPA increased the inactivation effect significantly. Gaseous ozone alone did not provide a sporicidal effect. Significant spore inactivation was only obtained when water vapour was injected into the PPA stream. CONCLUSION: The results show that endospores dried on surfaces can be reduced by several orders of magnitude within few minutes in a treatment chamber which is flushed with PPA from of a DBD plasma nozzle. SIGNIFICANCE AND IMPACT OF THE STUDY: Plasma processed air generated on site by DBD plasma nozzles could be a suitable alternative for the disinfection of various surfaces in closed rooms.


Assuntos
Descontaminação/métodos , Desinfetantes/farmacologia , Contaminação de Equipamentos/prevenção & controle , Gases em Plasma/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Descontaminação/instrumentação , Umidade , Propriedades de Superfície
12.
Antonie Van Leeuwenhoek ; 113(9): 1247-1261, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564276

RESUMO

The objective of this work was to evaluate the effectiveness of the putative biocontrol agents (PBA) Bacillus paralicheniformis and Trichoderma asperelloides in vitro and in vivo to control two of the most important tomato plant diseases: vascular wilt (Fusarium oxysporum) and early blight (Alternaria alternata). The assessment of the in vitro interactions between the PBA and the phytopathogenic fungi was performed by dual confrontation assays. The biocontrol effectiveness of the individual and combined PBA treatments towards individual phytopathogen inoculations was evaluated in tomato plants. T. asperelloides was able to exert an outstanding mycoparasitic effect on both phytopathogenic fungi in the in vitro tests by hyphal strangulation and penetration. In addition, the individual PBA treatments were effective in the biocontrol of A. alternata and F. oxysporum in tomato plants reducing the plant disease severity in more than 53.8 and 66.7% for each of the pathogens, respectively. On the other hand, the combined use of the tested strains showed similar effectiveness in the biocontrol of A. alternata, but no synergism was observed. In addition, it was concluded that B. paralicheniformis protected the plants from the attack of A. alternata through the induction of the systemic resistance of the plant. This study demonstrated the effectiveness of the individual and combined use of the strains tested for the biocontrol of A. alternata and F. oxysporum in tomato plants.


Assuntos
Alternaria/patogenicidade , Bacillus/fisiologia , Agentes de Controle Biológico , Fusarium/patogenicidade , Hypocreales/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Interações Microbianas , Doenças das Plantas/prevenção & controle
13.
Int J Phytoremediation ; 22(10): 1048-1058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062985

RESUMO

Arsenic contamination in agricultural soil now imposing a major threat to crop productivity and causing several hazardous health effects through percolation in food chain. Bioremediation, an efficient way of soil health restoration toward sustainability offered by some soil-borne microorganisms, has been reported. The present work deals with application of two potent arsenic-tolerant bacterial strains (Bacillus thuringiensis A01 and Paenibacillus glucanolyticus B05), obtained from natural sources in modulating overall growth and antioxidant defense against arsenic-treated rice plants. Between the two, former could reduce arsenic uptake up to 56% (roots) and 85% (shoots), and the preceding one up to 31% (roots) and 65% (shoots) in a hydroponic environment. Germination percentage was noted to be enhanced significantly (p ≤ 0.05). Expression of oxidative stress defensive enzymes such as superoxide dismutase, peroxidase and catalase have been augmented at seedling stages (21 days) toward detoxification of arsenic imposed excess ROS generation. Increment of leaf Thiobarbituric acid reactive substances due to arsenic exposure have been ameliorated by both the bacterial application. Phenolic and flavonoid mediated free radical scavenging ability of the test plants elevated significantly (p ≤ 0.05). The present work revealed that, selected bacterial strains can perform efficient bioremediation against arsenic pollutant rice cultivation.


Assuntos
Arsênio/análise , Bacillus , Água Subterrânea , Oryza , Paenibacillus , Poluentes do Solo/análise , Antioxidantes , Biodegradação Ambiental , Raízes de Plantas/química
14.
Curr Microbiol ; 76(12): 1512-1519, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31511964

RESUMO

Bacillus asahii strain OM18, a bacterium in relation to soil fertility, was isolated from alkaline soils under long-term organic manure application in the North China Plain. B. asahii species play a pivotal role in the promotion of both crop yield and soil fertility via accelerating carbon and phosphorus cycling. However, little is known about the characteristics of B. asahii and its underlying molecular mechanism involved in soil nutrient cycling as well as its potential in promoting crop growth. To this end, we report the characteristics and complete genome analysis of strain OM18, which is relevant to promoting plant growth in phosphorus-deficient alkaline soils. Our results provide a glimpse into the metabolic function of B. asahii OM18.


Assuntos
Bacillus/genética , Genoma Bacteriano , Esterco/análise , Solo/química , Bacillus/classificação , Bacillus/isolamento & purificação , Carbono/análise , Fertilizantes/análise , Nitrogênio/análise , Fósforo/análise , Filogenia , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
15.
Ecotoxicol Environ Saf ; 171: 37-46, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30594755

RESUMO

The North China Plain is the agricultural heartland in China. High PM2.5 levels and elevated chemical pollutants have been observed during crop harvest seasons due to open biomass burning. Biomass burning in the wheat-harvest season may significantly deteriorate the regional air quality. The harmful ingredients in smoke particles also have severe implications for toxicity and health effects. Previous studies have illustrated the potential role of bioaerosols as ice-nuclei and cloud condensation nuclei and highlighted their influence on biochemical cycles and human health effects. In a monthly field observation campaign of biomass burning conducted at the summit of Mount Tai in July 2015, we reported the composition, potential role, size distribution of microorganisms in particulate matters PM1.0, PM2.5, and estimated their contribution to particles. The wide-range particle spectrometer suggested that the predominant particles were distributed in submicron particles (PM1.0), which resulted in a similar community structure for bacteria and fungi in PM1.0 and PM2.5. Among bacteria, the predominant Pseudomonas accounted for 18.06% and 21.29% in PM1.0 and PM2.5, respectively. Alternaria covered up to 69.01% and 72.76% of the fungal community in PM1.0 and PM2.5, respectively. A disparity between bacterial communities was identified by the abundance of rare species, such as Bacilli being higher in PM1.0 (2.4%) than in PM2.5 (1.8%), and Defluviicoccus being higher in PM2.5 (2.5%) than in PM1.0 (0.5%), which may be related to cell size and cell growth patterns. Quantitative PCR revealed that microbial cell numbers in PM2.5 were higher than in PM1.0, and that the bacterial cell number was about an order of magnitude greater than the fungal cell number. However, the mass concentration and contribution of fungi to particulate matter was much higher than that of bacteria, suggesting the underestimated role of fungi in atmospheric aerosols. Airborne microorganisms in alpine areas remained less characterized. The findings presented here illustrated the potentially important impacts on air quality and bioaerosol pollution by biomass burning, which provides an essential reference for understanding the transmission and health effects of bioaerosols.


Assuntos
Bactérias/isolamento & purificação , Biomassa , Fungos/isolamento & purificação , Tamanho da Partícula , Material Particulado/análise , Aerossóis/análise , Agricultura , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Alternaria/isolamento & purificação , Bacillus/isolamento & purificação , Monitoramento Ambiental/métodos , Incêndios , Humanos , Pseudomonas/isolamento & purificação , Rhodospirillaceae/isolamento & purificação
16.
Arch Microbiol ; 200(8): 1239-1255, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29934785

RESUMO

This review presents biocontrol agents employed to alleviate the deleterious effect of the pathogen Fusarium graminearum on maize. The control of this mycotoxigenic phytopathogen remains elusive despite the elaborate research conducted on its detection, identification, and molecular fingerprinting. This could be attributed to the fact that in vitro and greenhouse biocontrol studies on F. graminearum have exceeded the number of field studies done. Furthermore, along with the variances seen among these F. graminearum suppressing biocontrol strains, it is also clear that the majority of research done to tackle F. graminearum outbreaks was on wheat and barley cultivars. Most fusariosis management related to maize targeted other members of Fusarium such as Fusarium verticillioides, with biocontrol strains from the genera Bacillus and Pseudomonas being used frequently in the experiments. We highlight relevant current techniques needed to identify an effective biofungicide for maize fusariosis and recommend alternative approaches to reduce the scarcity of data for indigenous maize field trials.


Assuntos
Agentes de Controle Biológico , Fusarium , Doenças das Plantas/prevenção & controle , Zea mays/microbiologia , Bacillus/fisiologia , Pseudomonas/fisiologia
18.
Plant Dis ; 102(1): 67-72, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30673446

RESUMO

Several studies have shown that mixtures of plant-growth-promoting rhizobacteria (PGPR) could enhance biological control activity for multiple plant diseases through the mechanisms of induced systemic resistance or antagonism. Prior experiments showed that four individual PGPR strains-AP69 (Bacillus altitudinis), AP197 (B. velezensis), AP199 (B. velezensis), and AP298 (B. velezensis)-had broad-spectrum biocontrol activity via antagonism in growth chambers against two foliar bacterial pathogens (Xanthomonas axonopodis pv. vesicatoria and Pseudomonas syringae pv. tomato) and one of two tested soilborne fungal pathogens (Rhizoctonia solani and Pythium ultimum). Based on these findings, the overall hypothesis of this study was that a mixture of two individual PGPR strains would exhibit better overall biocontrol and plant-growth promotion than the individual PGPR strains. Two separate greenhouse experiments were conducted. In each experiment, two individual PGPR strains and their mixtures were tested for biological control of three different diseases and for plant-growth promotion in the presence of the pathogens. The results demonstrated that the two individual PGPR strains and their mixtures exhibited both biological control of multiple plant diseases and plant-growth promotion. Overall, the levels of disease suppression and growth promotion were greater with mixtures than with individual PGPR strains.


Assuntos
Bacillus/química , Agentes de Controle Biológico/química , Capsicum/microbiologia , Cucumis sativus/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/microbiologia , Pseudomonas syringae/fisiologia , Pythium/fisiologia , Rhizoctonia/fisiologia , Xanthomonas axonopodis/fisiologia
19.
Int J Food Microbiol ; 413: 110580, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246027

RESUMO

Fusarium head blight (FHB) is one of the most common diseases in Argentina, affecting the quality and yield of barley grains. Fusarium graminearum sensu stricto (ss) and Fusarium poae are causal agents of FHB and potential sources of mycotoxin contamination in barley. Conventional management strategies do not lead to a complete control of FHB; therefore, biological control emerges as an eco-friendly alternative in the integrated management of the disease. In the present work, Bacillus velezensis, Bacillus inaquosorum, Bacillus nakamurai and Lactobacillus plantarum were evaluated as potential biocontrol agents against F. graminearum ss and F. poae on barley-based media. Bacillus velezensis RC218 was selected to carry out greenhouse and field trials in order to reduce FHB and mycotoxin accumulation. This strain was able to control growth of both Fusarium species and reduced deoxynivalenol (DON) and nivalenol (NIV) production by 66 % and 79 %, respectively. Bacillus inaquosorum and B. nakamurai were more effective in controlling F. poae growth, and the mean levels of reduction in DON accumulation were 50 and 38 %, and 93 and 26 % for NIV, respectively. Lactobacillus plantarum showed variable biocontrol capacity depending on the strain, with no significant mycotoxin reduction. The biocontrol on incidence and severity of FHB in the greenhouse and field trials was effective, being more efficient against F. graminearum ss and DON accumulation than against F. poae and NIV occurrence. This study provides valuable data for the development of an efficient tool based on biocontrol agents to prevent FHB-producing Fusarium species development and mycotoxin occurrence in barley, contributing to food safety.


Assuntos
Bacillus , Fusarium , Hordeum , Micotoxinas , Tricotecenos , Doenças das Plantas/prevenção & controle
20.
Environ Pollut ; 356: 124254, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815893

RESUMO

There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.


Assuntos
Carvão Vegetal , Lactuca , Microbiologia do Solo , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Lactuca/crescimento & desenvolvimento , Solo/química , Bacillus/metabolismo , Verduras/crescimento & desenvolvimento , Chumbo/metabolismo , Cádmio/análise , Cádmio/metabolismo , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Agricultura/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA