RESUMO
Oily sludges are generated in large quantities in petroleum refinery wastewater treatment plants. Given their complex composition, they are classified as hazardous waste. Selecting a single treatment technique for their remediation is challenging. This work aims to assess the extent of composting followed by phytoremediation on an oily sludge from an API separator unit, pre-treated by chemical oxidation with alkaline activated persulfate (PS). 18% of total petroleum hydrocarbons (TPH) were determined by IR spectroscopy. The aliphatic hydrocarbon content was 4714 ± 250 ppm by GC-FID, and aromatics were not detectable, suggesting a high amount of non-chromatographable complex hydrocarbons. The density of generalist and hydrocarbon-degrading populations of the oily sludge estimated by quantitative polymerase chain reaction (qPCR) evidenced an autochthonous microbiota with hydrocarbon-degrading capacity. The oxidative treatment with PS removed 31% of the TPH determined by IR after 20 days. The significant reduction of the native bacterial community was counterbalanced by coupling a composting treatment. Co-composting the sludge with goat manure and oat straw produced, after a year, a 96% reduction in TPH content, regardless of the oxidative pretreatment. Organic matter transformation was evidenced by the decrease of dissolved organic carbon (DOC) and the variation in E4/E6 ratio. The matrices obtained of composting were used as substrates for phytoremediation for 4 months. Ryegrass seeds were planted in both PS-treated and untreated sludge substrates. The presence of the plant grown in the pre-oxidised and composted substrate resulted in a higher aerial biomass of ryegrass (67%), an increase in enzymatic activities, and higher concentration of DOC, although without evidence of additional dissipation of TPH. The dynamics of the bacterial communities of the different substrates generated during the biological treatment were analyzed by Illumina NovaSeq DNA sequencing of 16S rRNA amplicons. The findings mirrored a succession compatible with that described in contaminated matrices, but also in other non-contaminated ones. According to these findings, an organic matter transformation process occurred, which included the complex hydrocarbons of the oily sludge, resulting in an active substrate that promoted the retention of nutrients and water and provided the necessary support for plant development.
Assuntos
Biodegradação Ambiental , Compostagem , Petróleo , Esgotos , Petróleo/metabolismo , Oxirredução , Hidrocarbonetos/metabolismoRESUMO
Mature composts and their water-based extracts, known as aerated compost teas (ACTs), are biofertilizers that share bioactive effects like soil restoration and plant health promotion, widely used for sustainable agriculture. Bioactive effects of compost and ACTs could be associated with their physicochemical and biological characteristics, like carbon/nitrogen (C/N) ratio and microbiota structure respectively. In our study, we elaborated ACTs using mature homemade compost, wheat bran, and grass clippings, following the C/N ratio criteria. Irrigation of tomato plantlets with ACT whose C/N ratio was close to the expected C/N ratio for mature compost evidenced plant growth promotion. Exploring the bacterial microbiota of elaborated ACTs and origin compost revealed significant structural differences, including phyla involved in N mineralization and free-living N-fixing bacteria. Therefore, ACTs harbor diverse bacterial microbiota involved in the N cycle, which would enrich plant and soil bacterial communities at the taxonomic and functional levels. Furthermore, ACTs are considered a part of agroecological and circular economy approaches.
Assuntos
Compostagem , Microbiota , Solanum lycopersicum , Solo/química , Bactérias , Nitrogênio , Microbiologia do SoloRESUMO
Plastic has been present in our lives for the past century as an essential material for many commodity items. However, the same properties that make plastic convenient are also responsible for the current dramatic environmental pollution. As an alternative, most of the world has been working with technological innovations, and one of its strategies is the use of bioplastics. Despite being considered environmentally beneficial by some people, there are still developments and discussions that need to be made. This article aims to present a legislative review and discusses the difficulty in implementing policies related to the incentive of the bioplastics market, as well as presenting some state and municipal laws, already prohibiting single-use plastics in Brazil. These laws aim to encourage the substitution of these plastics for biodegradable ones. However, it still has gaps and a lack of clarification on how the banning of disposable plastics and their substitution will be beneficial since composting is still an incipient process in the country. It is also the purpose of this article to discuss the challenges in the context of the Circular Economy, as well as the potential solution based on the creation of public policies aimed at improving waste management, in addition to clearer legislation on alternatives to single-use plastics.
Assuntos
Compostagem , Gerenciamento de Resíduos , Brasil , Poluição Ambiental/prevenção & controle , Humanos , PlásticosRESUMO
Spatial resource heterogeneity is expected to be a key driver for the evolution of diversity. However, direct empirical support for this prediction is limited to studies carried out in simplified laboratory environments. Here, we investigate how altering spatial heterogeneity of potting compost-by the addition of water and mixing-affects the evolutionary diversification of a bacterial species, Pseudomonas fluorescens, that is naturally found in the environment. There was a greater propensity of resource specialists to evolve in the unmanipulated compost, while more generalist phenotypes dominated the compost-water mix. Genomic data were consistent with these phenotypic findings. Competition experiments strongly suggest these results are due to diversifying selection as a result of resource heterogeneity, as opposed to other covariables. Overall, our findings corroborate theoretical and in vitro findings, but in semi-natural, more realistic conditions.
Assuntos
Evolução Biológica , Compostagem , Pseudomonas fluorescens/genética , Microbiologia do Solo , Genoma Bacteriano , FenótipoRESUMO
Odor emissions represent one of the important issues of aerobic composting. The addition of microbial agents to compost is an important method for solving this problem, but this process is often unstable when a single microbial agent is added to the compost. Therefore, in this study, five treatments comprising different proportions of Bacillus stearothermophilus, Candida utilis, and Bacillus subtilis were tested to determine the best combination of the three microbial agents for ammonia reduction, as follows: control group (CK), 2:1:1 (A), 1:1:2 (B), 1:2:1 (C), and 1:1:1 (D). Compared with the CK group, the A, B, C, and D groups reduced ammonia emissions by 17.02, 9.68, 53.11, and 46.23%, respectively. The total ammonia emissions were significantly lower in C and D than in CK (p < 0.05). These two treatment groups had significantly increased nitrate nitrogen concentrations and decreased pH values and ammonium nitrogen concentrations (p < 0.05). Throughout the composting process, the total bacterial number was significantly higher in C and D than in CK (p < 0.05). Therefore, it is likely that B. stearothermophilus, C. utilis, and B. subtilis compounded from 1:2:1 (C) to 1:1:1 (D) reduced the ammonia emissions due to (1) a reduction in the pH and (2) the promotion of the growth of ammonia-oxidizing bacteria and the conversion of ammonium nitrogen to nitrate nitrogen. This study provides a theoretical basis and technical support for the odor problem of layer manure compost and promotes the development of composting technology.
Assuntos
Amônia/química , Biodegradação Ambiental , Compostagem , Microbiologia Ambiental , Esterco , Amônia/análise , Candida/metabolismo , Geobacillus stearothermophilus/metabolismo , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Oxirredução , TemperaturaRESUMO
Complying with the technical specifications of compost production is of high importance not only for environmental protection but also for increasing the productivity and promotion of compost use by farmers in agriculture. This study focuses on the compost quality of the Palestinian market and farmers' attitudes toward agricultural use of compost. The quality is assessed through selection of 20 compost samples of different suppliers and producers and lab testing for quality parameters, while the farmers' attitudes to compost use for agriculture are evaluated through survey questionnaire of 321 farmers in the Hebron area. The results showed that the compost in the Palestinian markets is of medium quality due to partial or non-compliance with the quality standards and guidelines. The Palestinian farmers showed a positive attitude since 91.2% of them have the desire to use compost in agriculture. The results also showed that knowledge of difference between compost and chemical fertilizers, perception of compost benefits, and previously experiencing problems in compost use are significant factors affecting the farmers' attitude toward the use of compost as an organic fertilizer.
Assuntos
Compostagem/métodos , Monitoramento Ambiental , Fertilizantes/análise , Agricultura/métodos , Atitude , Conservação dos Recursos Naturais , PercepçãoRESUMO
AIM: To investigate selected factors of two nonaerated compost teas (NCT) and mechanisms that influence the restriction of several fungal potato pathogens. METHODS AND RESULTS: Two NCTs, made from either commercial compost, (CCT) or vineyard compost (VCT), were tested for their ability to suppress potato pathogens. The VCT was more suppressive than CCT to mycelial growth of Alternaria solani and Rhizoctonia solani isolate 299, but not for R. solani isolate 422. Metagenomic studies of microbial diversity revealed that the CCT had higher fungal and bacterial diversity and richness than the VCT. Use of CCT significantly reduced lesion area of Alternaria alternata on detached leaves, however, a gum adjuvant did not lead to significantly greater control. Scanning microscopy showed that the spatial distribution of microbes from the CCT was altered with gum addition, to resemble what may have been a microbial biofilm. CONCLUSION: We confirmed that each NCT could suppress the mycelial growth of selected potato pathogens in culture, and CCT reduced A. alternata lesions on detached leaves. Factors including concentration, microbial communities and physio-chemical properties could not be consistently linked to NCT efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY: This study particularly highlights the application of scanning microscopy to study the interaction between pathogens and putative NCT microbes on foliar surfaces. This adds insight to mechanisms of NCT efficacy, along with physico-chemical and microbial characterization of the teas. This study shows the potential for the use of NCTs as a crop protection tool of low-cost which could be of particular benefit in smallholder agriculture.
Assuntos
Alternaria/efeitos dos fármacos , Camellia sinensis/química , Compostagem/métodos , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Rhizoctonia/efeitos dos fármacos , Solanum tuberosum/microbiologia , Resíduos/análise , Alternaria/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Extratos Vegetais/química , Rhizoctonia/crescimento & desenvolvimento , Chá/químicaRESUMO
The ecotoxic substances in Cinnamomum camphora garden wastes (CGW) often restrain microbe-driven composting process. Here, a dynamic CGW-Kitchen waste composting system actuated by a wild-type Caldibacillus thermoamylovorans isolate (MB12B) with distinctive CGW-decomposable and lignocellulose-degradative activities was reported. An initial inoculation of MB12B optimized for temperature promotion with reduced emission of CH4 and NH3 by 61.9% and 37.6%, respectively, increased germination index and humus content by 18.0% and 44.1%, respectively, and reduced moisture and electrical conductivity, and all were further reinforced by reinoculation of MB12B during the cooling stage of composting. High-throughput sequencing showed varied bacterial community structure and abundance following MB12B inoculation, with temperature-relative Caldibacillus, Bacillus, and Ureibacillus, and humus-forming Sphingobacterium emerging to dominate abundance, which strongly contrasted with Lactobacillus (acidogens related to CH4 emission). Finally, the ryegrass pot experiments showed significant growth-promoting effectiveness of the composted product that successfully demonstrated the decomposability and reuse of CGW.
Assuntos
Bacillus , Cinnamomum camphora , Compostagem , Jardins , SoloRESUMO
The purpose of this paper was to explore the promotion of maleic anhydride on the polymerization of precursors into humus in composting, and analyze the changes of key functional enzymes. The results showed that the content of humus in the treatment group added maleic anhydride (MAH) was higher than that in the control check (CK). The decrease rate of humus precursor concentration of MAH was also higher than that of CK. In MAH, the activities of laccase and tyrosinase were improved, thus enhanced the catalytic conversion of humus precursors. The analysis of bacterial community showed that maleic anhydride optimized the community structure of humification functional enzymes producing bacteria, with the most obvious increase of Firmicutes. In conclusion, this study provided theoretical supports for the introduction of maleic anhydride into the compost system to promote the polymerization of precursors to form humus.
Assuntos
Compostagem , Solo , Anidridos Maleicos/química , Bactérias , Polimerização , EstercoRESUMO
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Assuntos
Compostagem , Solo , Substâncias Húmicas/análise , EstercoRESUMO
To explore the mechanism of Phanerochaete chrysosporium (P. chrysosporium) inoculation driving the humification process of maize straw composting, the treatments without P. chrysosporium inoculation (T1) and that with P. chrysosporium inoculation (T2) were carried out separately during the secondary fermentation of the co-composting of maize straw and rapeseed cake. The key microorganisms were determined by evaluating the succession of the fungal community and its relationship with humification process parameters. The results showed that P. chrysosporium inoculation (T2) reduced fungal diversity but increased the relative abundance of Coprinopsis and Talaromyces. At the end of the composting (day 36), the relative abundance of Talaromyces and Coprinopsis in T2 increased by 1223.7% and 30.2%, respectively, compared with T1. Combined CCA and SEMs analyses demonstrated the microbially driven mechanisms that enhance the humification process of composting, that is, P. chrysosporium inoculation promoted lignin continuous degradation by promoting the relative abundance of Talaromyces and Coprinopsis during the secondary fermentation of composting; meanwhile, P. Chrysosporium inoculation further intensified the biological process of humification in composting.
Assuntos
Agaricales , Compostagem , Phanerochaete , Talaromyces , Solo , Phanerochaete/metabolismo , FermentaçãoRESUMO
The odor emission such as ammonia (NH3) and hydrogen sulfide (H2S) during the composting process is a severe problem that adversely affects the environment and human health. Therefore, this study aimed to (1) evaluate the variation of physicochemical characteristics during the co-composting of food waste, and sawdust mixed biochar; (2) assess the efficiency of biochar-composting combined amendment materials for reducing odor emissions and their maturity. The raw materials including food waste (FW), straw dust (SD), and biochar (BC) were prepared and homogeneously mixed with the weight ranging from 120.0 kg to 135.8 kg with five treatments, BC0 (Control), BC1 (5 % biochar), BC2 (5 % distilled water washed biochar), BC3 (10 % biochar), BC4 (20 % biochar). Adding biochar could change physicochemical properties such as temperature, moisture, and pH during composting. The results indicated applying biochar-composting covering to minimalized NH3 and H2S aided by higher porous structure and surface functional groups. Among trials, biochar 20 % obtained the lowest NH3 (2 ppm) and H2S (3 ppm) emission on day 16 and stopping their emission on day 17. The NH3/NH4+ adsorption on large specific surface areas and highly porous micro-structure of biochar lead to reduced nitrogen losses, while nitrification (NH4+ â NO2- â NO3-) may also contribute to nitrogen retention. The H2S concentration decreased with increasing the biochar proportion, suggesting that biochar could reduce the H2S emission. Correlation analysis illustrated that temperature, moisture, and oxygen are the most critical factors affecting H2S and NH3 emissions (p <0.05). The physicochemical properties and seed germination index indicated that the compost was mature without phytotoxicity. These novelty findings illustrated that the biochar amendment is an effective solution to reduce odor emission and enhances the maturity of compost mixture, which is promising to approach in real-scale conditions and could apply in agricultural fields.
Assuntos
Compostagem , Eliminação de Resíduos , Humanos , Alimentos , Odorantes/prevenção & controle , Solo/química , Esterco , Carvão Vegetal/química , Nitrogênio/análiseRESUMO
Emissions of odorous gases and prolonged composting duration are the key concerns in the composting of digestate from food waste (DFW). In this study, different amounts of biochar derived from DFW (BC-DFW) were introduced in the composting process of DFW to decrease the emissions of ammonia (NH3) and volatile sulfur compounds (VSCs) and composting duration. The addition of BC-DFW increased the temperature and germination index during DFW composting. The group with 25% BC-DFW exhibited a 30% smaller composting duration. Significant amounts of NH3 and VSCs emissions were observed in the initial phase of DFW composting. Dimethyl disulfide (DMDS) was a prominent contributor to the odor associated with VSCs. The addition of BC-DFW facilitated the adsorption of NH3 and VSCs, and the corresponding contents decreased by 5-21% and 15-20%, respectively. Moreover,the BC-DFW accelerated the transformation of ammonium-nitrogen (NH4+-N) to nitrate-nitrogen (NO3--N), thereby alleviating the NH3 volatilization. The addition of 25% BC-DFW minimized the NH3 emission and enhanced the generation of humic-acid-like matter, thereby promoting humification. Therefore, the addition of 25% BC-DFW was optimal for promoting the degradation of organic matter and humification and odor emission reduction (e.g., NH3, DMDS).
Assuntos
Compostagem , Eliminação de Resíduos , Carvão Vegetal , Alimentos , Gases , Esterco , Nitrogênio/análise , Odorantes/prevenção & controle , Solo , Compostos de EnxofreRESUMO
Land application of MSW compost promotes the soil fertility and productivity, but there is concern about its chemical and microbial quality. Although, current microbial indicators of MSW compost are generally considered to be protective of human health, the use of these indicators doesn't adequately represent the presence of pathogens that might be more resistant to inactivation during composting process. This work aims evaluation of the microbial characteristics of MSW compost and estimation of the health risks associated with exposure to pathogens of potential concern in MSW compost. Although the recommended standards for fecal coliforms and Salmonella were met in a relatively high percentage of samples, there were detectable levels of microbial pathogens. The highest daily infection risk was estimated for Cryptosporidium (1.25 × 10-3 per person) followed by Salmonella and Campylobacter, while the lowest related to adenovirus. Infection risks were low for both farmers and children in one-time exposure and all pathogen risks were decreased with increasing waiting time to near insignificant levels. However, the median annual risk of cryptosporidiosis or gastroenteritis was above the recommended value of 10-3 per person per year. Because of potential presence of pathogens in MSW compost, some level of pathogen monitoring beyond conventional indicators may be required to estimate potential risks. The findings of this study could provide information to governments and local authorities in making decisions on measures to reduce risk from application of MSW compost. Further research is needed to obtain the reliable information about the inactivation of microorganisms in environment.
Assuntos
Compostagem , Criptosporidiose , Cryptosporidium , Criança , Humanos , Saúde Pública , Salmonella , Solo/química , Resíduos SólidosRESUMO
Municipal solid waste (MSW) composting is one of the most effective strategies for MSW management but detrimental litter such as plastic and glass debris must be discarded elsewhere. Well-segregated wastes are necessary in this context. A compost bin is a waste collection tool for source separation. To date, the deployment of compost bins for source separation has received scant investigation. This study investigated the effects of compost bin design in terms of user design preferences, waste collection and sorting execution, and segregation behavior. The study comprised a survey and an on-site experiment. Design preferences of nine designed compost bins were evaluated by surveying 400 respondents using the pairwise comparison method. It was revealed that design preference was determined by bin shape and slot position. On-site experiments were conducted to establish collection rate, contamination rate, capture rate, and effective capture rate under different conditions. Under the experimental conditions, better segregation rates were observed in comparison with the control condition. The contamination rate was reduced by 55.9%. The capture rate and the effective capture rate were increased by 8.90%, and 53.4%, respectively. The significant effects of design preferences, physical designs, visual prompts, and past behavior were identified via statistical methods. Source-separated waste collection can be improved through preferred compost bin adoption, enhanced design, appropriate visual prompts, and experience in waste segregation. Therefore, the findings of this study will help to generate effective source-separated collection and allow compost bins to be placed in public areas for integrated and sustainable waste management.
Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Participação da Comunidade , Meio Ambiente , Humanos , Solo , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodosRESUMO
The purpose of this study is to explore the action characteristics of metabolic regulators like adenosine tri-phosphate (ATP) and malonic acid (MA) during rice straw (RS) and fruit and vegetable waste (FVW) composting. Results showed that due to the easy degradation difference, ATP and MA reduced CO2 emission in RS and FVW, respectively. Moreover, adding ATP and MA increased humic acids (HA) content in FVW more significantly (p < 0.05), especially for ATP. However, adding MA accelerated organic matter degradation during RS composting, which was basically consistent with CO2 emission, but it was not effective in promoting HA formation. Furthermore, the microbial community was reshaped by adding ATP and MA. Eventually, structural equation model further confirmed that adding metabolic regulators enhanced the biotic and abiotic pathways of HA formation, and the promotion effect of adding ATP was more obvious. The study has great practical significance for the dispose of agricultural waste.
Assuntos
Compostagem , Oryza , Carbono , Substâncias Húmicas/análise , SoloRESUMO
The aim of this study was to explore a novel method to immobilize heavy metals (HM) in composting through increasing the combination of these with humic substances. An electric-field assistant technique was applied to strengthen biomass biodegradation and assess the impact on the humification process and HM immobilization in composting. Results demonstrated that the application of an electric field enriched bacterial abundance and enhanced bacterial metabolism. Humic substance and humic acid (HA) contents in compost product were significantly increased by 19 and 69%, respectively. The HA-complexed Cu, Zn, As, Cd contents were increased by 34, 41, 29 and 135.1%, respectively, which was attributed to the promotion of HA formation since a positive correlation between HA and HA-complexed HM (R2 = 0.60-0.87) was established. The evidence presented here supports the future development of electric field implementation as an intrinsic bioremediation technique for HM immobilization.
Assuntos
Compostagem , Metais Pesados , Biodegradação Ambiental , Biomassa , Substâncias Húmicas/análise , Metais Pesados/análise , SoloRESUMO
Sludge landscaping after compost stabilization is a popular recycling process; however, until trace elements (TEs) are extracted by plants and reduced to safe concentrations, they present a potential exposure risk. Three garden plants, Liriope platyphylla Wang et Tang (L. platyphylla), Iris tectorum Maxim (I. tectorum), and Photinia x fraseri Dress (P. x fraseri), were selected for field experiments, and their ability to phytoremediate TEs and the promotion effect of citric acid (CA) were studied over 3 months of observation. Among the three kinds of plants, L. platyphylla had the highest biomass per unit soil area, and the CA treatment further increased the biomass of this plant per unit soil area as well as the uptake of TEs. When treated with 3 mmol kg-1 CA, L. platyphylla showed increases in the bioconcentration factors of Cu, Zn, Pb, and Cd by 24%, 63%, 27%, and 123%, respectively. Because of the large biomass and high concentrations of TEs, L. platyphylla had high phytoremediation indexes for Zn, Cu, Pb, Ni, and Cd, which reached 18.5, 3.7, 3.2, 2.2, and 0.4 mg m-2, respectively, and were further improved by 60%-187% by the CA treatment. These advantages indicate the potential usefulness of L. platyphylla for phytoremediation. The results provide basic data and technical support for the use of sludge-based compost and phytoremediation by garden plants.
Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Oligoelementos , Biodegradação Ambiental , Ácido Cítrico , Jardins , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análiseRESUMO
Composting is a biological decomposition process that occurs from microbial progression, which brings about the degradation and stabilization of various organic waste into compost. During composting, the emission of undesirable odor adversely affects compost quality and causes environmental deterioration. Also, odor emission from composting adversely affects human health and well-being. Ammonia (NH3), volatile organic compounds (VOCs), and hydrogen sulfide (H2S) are major components of odorous gases responsible for unpleasant odor. Physiological parameters such as pH, temperature, and aeration affect the pattern of odor emission during the composting process. The lack of techniques for the accurate identification and estimation of odor and control are some major challenges associated with composting. Therefore, the present review article concentrates on challenges and solutions to odor control. Biotrickling filter, optimization of process parameters, usage of additives, microbial inoculation, and pre-treatment techniques are practiced to lower odor emission during the process. The application of metagenomics may provide insight into the various biogeochemical pathways that can be explored in the future for odor control.
Assuntos
Poluentes Atmosféricos/metabolismo , Amônia/metabolismo , Compostagem , Sulfeto de Hidrogênio/metabolismo , Odorantes/prevenção & controle , Compostos Orgânicos Voláteis/metabolismoRESUMO
Aiming to promote low-cost production of protein-rich forage rice and resource recycling from wastewater treatment plants, a pot experiment was conducted to assess the possibility to substitute mineral fertilizers with composted sewage sludge (CSS) with/without top-dressing with treated municipal wastewater (TWW). Results indicated that a basal application of CSS at 2.6 g N pot-1 replaced conventional mineral fertilization of 1.3 g N pot-1 to produce comparable yields with the same rice protein content, although there might be a risk of increased As concentration in rice grains. Interestingly, CSS application at a reasonable dose of 1.3 g N pot-1, followed by a topdressing with TWW resulted in 27% higher yield and 25% superior rice protein content relative to the mineral fertilization, with no risk of heavy metal(loid) accumulation in grains and in paddy soils. Here we demonstrated an appealing fertilization practice with zero use of mineral fertilizers in paddy rice cultivation, expectedly contributing towards sustainable rice farming and animal husbandry in Japan.